
Vol. 26, No. 2 · MAY 2012 $15

Big Data Appliance
Learn about the game-changer
from ACE Director Gwen
Shapira.
See page 12.

RAC and Ruin
An excerpt from Jonathan
Lewis’ latest book.
See page 18.

Show Me the Way
An interview with the genius
behind Statspack and AWR.

See page 4.

Knowledge Happens

Much more inside . . .

Oracle acceleratiOn

Yeah, it’s kind of like that fast!

Put Your Big Data on the Fast Track.
The GridIron Systems TurboCharger™ data acceleration
appliance seamlessly integrates into your existing IT
environment without changes to applications, databases,
servers, storage or operational processes.

Learn more at www.gridironsystems.com/oracle.

�The NoCOUG Journal

2012 NoCOUG Board
President

Iggy Fernandez
iggy_fernandez@hotmail.com

Vice President
Hanan Hit, HIT Consulting, Inc.

hithanan@gmail.com

Secretary/Treasurer
Naren Nagtode, eBay
nagtode@yahoo.com

Director of Membership
Alan Williams, Autodesk

alan.williams@nocoug.org

Journal Editor
Iggy Fernandez

iggy_fernandez@hotmail.com

Webmaster
Eric Hutchinson, Independent Consultant

erichutchinson@comcast.net

Vendor Coordinator
Omar Anwar

oanwar@gwmail.gwu.edu

Director of Conference Programming
Chen (Gwen) Shapira, Pythian

cshapi@gmail.com

Director of Marketing
David Crawford, Cloud Creek Systems

dcrawford@cloudcreek.com

Training Day Coordinator
Randy Samberg

rsamberg@sbcglobal.net

IOUG Liaison
Kyle Hailey, Delphix
kylelf@gmail.com

Track Leader
Eric Jenkinson

eric.jenkinson@ehjconsultancy.com

Book Reviewer
Brian Hitchcock

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for the upcoming August 2012 issue is May 31, 2012.
Article submissions should be made in Microsoft Word format via email.

Copyright © 2012 by the Northern California Oracle Users Group except where
otherwise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Interview.. 4

Book Review... 8

Performance Corner.. 12

Book Excerpt... 18

SQL Corner..21

Sponsorship Appreciation.............................. 24

SQL Challenge.. 25

Conference Schedule...................................... 28

ADVERTISERS

GridIron Systems.. 2

Quest Software..11

Apress...15

Delphix... 23

Amazon Web Services................................... 23

Confio Software.. 23

Quilogy Services... 23

Database Specialists....................................... 27

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

	 Size	 Per Issue	 Per Year

	 Quarter Page	 $125	 $400

	 Half Page	 $250	 $800

	 Full Page	 $500	 $1,600

	 Inside Cover	 $750	 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Thanking the Team

T
ake a moment to think about the huge amount of effort that goes

into this publication. Your first thought might be about the care

and attention required of the authors. Yes, writing is hard work.

Now consider each author’s years of hard-won experience; then

add it up. The cumulative amount of time spent to acquire the knowledge

printed in each issue is decades—maybe even centuries.

But let’s take a moment to thank the people who make it possible for us to

share this knowledge with you. Without the dedication and skill of our produc-

tion team, all that we’d have is a jumble of Word files and a bunch of JPEGs.

Copyeditor Karen Mead of Creative Solutions transforms our technobabble into

readable English. Layout artist Kenneth Lockerbie and graphics guru Richard

Repas give the Journal its professional layout.

Finally, what really distinguishes this Journal is that it is actually printed!

Special thanks go to Jo Dziubek and Allen Hom of Andover Printing Services for

making us more than just a magnetically recorded byte stream. s

—NoCOUG Journal Editor

� May 2012

Graham Wood has been working with Oracle Database for 25
years. He is currently a product manager for the Oracle RDBMS
based in Redwood Shores, Calif. He has architected and tuned
some of the largest Oracle databases, and has presented around
the world on Oracle performance–related topics.

I have it on very good authority (Tom Kyte in the current
issue of Oracle Magazine) that you are the genius and inno­
vator behind Statspack and Automatic Workload Repository.
I am in awe. Tell me the story behind that.

Wow, starting with a memory test! When Oracle V6 was
introduced it contained the first V$ views, such as V$SYSSTAT
and V$FILESTAT. These structures were created to allow da-
tabase development to understand which parts of the code
were being executed, and how often, during the running of
the OLTP benchmarks that had started to appear at that time.
The database shipped with two scripts that were used to pro-
duce a report from the V$ views during a benchmark run.
These were bstat.sql, which captured the current contents of
the V$ views at the start of the benchmark into a set of tables,
and estat.sql, which captured the contents at the end of the
benchmark into another set of tables, produced a report from
the two sets of tables, and then dropped them. I was working
in a small specialist performance group in Oracle UK at the
time and it occurred to us, being database guys, that it might
be useful for production systems to do regular captures of the
V$ views and to keep this data around for rather longer as a
repository of performance data. We wrote some scripts and
started to distribute them inside Oracle, and they also found
their way out to several customers. This was the original “Stats
Package,” as we called it. As new releases of the database came
out, I upgraded the scripts, probably most notably with the
inclusion of V$SQL in Oracle V7 in the Stats7 package. In
1996 I moved to Oracle HQ in Redwood Shores to work in the
Server Technologies Performance Group, and one of the goals
that I set myself was to get the scripts shipped with the prod-
uct so that all customers could use them. They finally made it
into the database distribution in Oracle 8i as Statspack after

being updated and enhanced by Connie Green. And the rest,
as they say, is history, with almost all big Oracle sites using
Statspack to keep a history of performance data.

When we started development of Oracle 10g, one of the
main focus areas for the release was to be manageability, and
a key part of that was to simplify performance analysis and to
make recommendations for performance improvement. The
most important part of this for me was to be able to automate
performance analysis for a database instance and to identify
the key areas where improvements could be made. Basically,
unless the analysis is correct, there is no point in trying to
make recommendations. In order to do this we needed to have
a common currency for reporting across the components of
the database and for quantifying the performance of a system.
This led to the introduction of the concept of DB Time, the
time spent in the database by user sessions, which allowed us
to do quantitative comparisons between different components
and also to quantify the impact on the system of an issue—for
example that a single SQL statement represents 27% of all of
the user time spent in the database. One of the main objec-
tives of this was to make DBAs more effective by directing
them to areas where they were likely to be able to make the
greatest improvements in performance, rather than them
spending time and effort on making changes that produced
little benefit. To do all of this needed much more infrastruc-
ture than there was in Statspack and in Oracle 10g, and a lot
of effort went into ensuring that we had adequate data avail-
able to do analysis of a performance problem the first time
that it occurred. This resulted in an automatically managed
repository of data (AWR), which contained not only data
from normal V$ views containing cumulative statistics but
also metric data and sampled activity data in the Active
Session History. The combination of all of these data sources
has taken performance analysis to a different level.

Tom Kyte’s favorite performance story is about a database
that was always slow on rainy Mondays. What’s your favorite
performance story from your own experiences?

Show Me The Way
with Graham Wood

I N T E R V I E W

Graham Wood

“The most common problem that I see is that of flawed analysis:
fixating on a particular statistic or event, which means that

you never get to the root cause of the problem.”

Beating the
Oracle Optimizer!

with
Jonathan Lewis

August 17

T
his is a follow-on from last year’s course “Designing Optimal SQL.” It focuses on writing SQL to

emulate transformations that are currently not available to the Oracle Optimizer. Last year’s

course was essentially a guide to writing “normal” SQL in the best possible way; this course is

about writing “abnormal” SQL, because that’s the only efficient thing to do sometimes!

We start with a brief reminder of what we need to know to write efficient and scalable SQL. Then we

examine the B-tree and bitmap access paths that are automatically available to Oracle as it accesses a single

table, before extending Oracle’s strategies with a few manually constructed strategies that become available

if we can rewrite the SQL.

We next examine a very simple join and note a fundamental limitation in the optimizer’s ability to find

the best strategy for joining two tables. We see how we can overcome this limitation—at a cost of more

complex SQL—and look at the way we need to think about joins to minimize the work we do, noting that the

possible benefit isn’t always as great as we might first think. We also review a method for keeping the code

simpler at a risk of variable performance, and then find that we can eliminate the variability by again increas-

ing the complexity.

After setting the groundwork with single-table access paths and two-table joins, we go on to more com-

plex examples, showing how the principle can be used to emulate data warehouse query patterns in a

structure designed for OLTP data access—even to the extent of emulating a Star Transformation in Standard

Edition Oracle where bitmap indexes are not implemented.

Falling back to slightly more standard SQL, we take a look at the way in which we can use features like

function-based indexes, virtual columns, and deterministic functions in the newer versions of Oracle to reduce

work. We also look at the ways in which structures such as sorted hash clusters and partitioning allow us to

rethink the way we write SQL to minimize the work done.

Register at http://www.speak-tech.com

� May 2012

One company that I worked with early on in my Oracle
career asked me to help them improve the performance of a
large batch report which was produced every night and went
out to six people around the organization. It was causing
problems for all of the rest of their batch operations by con-
suming a large amount of resources. The first improvement
was to run the report once and print six copies rather than run
the same report six times! Then I spoke to the folks who re-

ceived the report and found out that three of them immedi-
ately tossed it in the trash (this was before the days of recycling),
and the other three never looked beyond the first four sum-
mary pages as they now had an online system that allowed
them to look at the details. We ended up changing the report
to just produce the summary, and the overnight batch load on
the system dropped by about 95% from the start point. It was
definitely a case of it always being faster to not do something
than to do it.

What are the typical issues you see when you are asked to look
at a performance problem? Indexes? Statistics?

Well by the time I get called in to look at a performance
problem these days there have probably already been quite a
few people looking at it before, so all of the obvious things
have already been tried. So, to be honest, the most common
problem that I see is that of flawed analysis: fixating on a par-
ticular statistic or event, which means that you never get to the
root cause of the problem and you end up trying to deal with
a long list of symptoms. Much better to take a top-down ap-
proach and make sure you have the real cause before trying to
fix things. If you have a really bad headache you could try and
find a better aspirin or lie down in a darkened room, but you
might be better to just stop banging your head against the wall.
Having said that, I do still see a lot of problematic SQL, and
drilling down to the root cause has become so much easier
with the introduction of SQL Monitor. It is one of my top
features of Oracle 11g, both for DBAs and developers, as it
makes it so easy to find out exactly where in the plan the high
resource usage and bad cardinality estimates are coming from,
without even having to look at the details of the SQL itself.
And, of course, I still see applications that have poor connec-
tion management and perform unnecessary parsing, even
though we have been telling folks how to do it right for a
couple of decades now.

I’ve heard a rumor that attendees of the Real World Perfor­
mance events are being told that “tune” is a four-letter word.
Is that some sort of insider joke? What does it mean?

I think that you have me confused with Cary Millsap! Cary
differentiates between “tuning” and “optimizing.” The four-
letter word that we talk about in the Real World Performance
Day is “hack.” We define hacking as making changes without
having diagnosed the root cause of the problem, without hav-
ing scoped the problem or solution, and without being able to
detail the expectation, in terms of what changes can be ex-
pected in the database performance statistics, of applying the
“fix.” Most commonly these days the supporting argument for
applying a hack is “well, I found a website that said if I set _
go_faster in the init.ora I will run at least three times faster.”
While Google can obviously be a good source of information,
you have to remember that not everything that you read on
the Internet is true. There really is no good alternative to
doing proper performance analysis (although the availability
of DB Time and ADDM make it easier) and proper testing, in
your environment and with your data.

In Oracle on VMware, Dr. Bert Scalzo makes a case for “solv­
ing” performance problems with hardware upgrades. What’s
your opinion about this approach? 1

Ah, the “hardware is the new software” approach, as my
colleague Andrew Holdsworth calls it. Software was called
software because it was the part of the system that was “soft’
and could easily be changed. These days we often see custom-
ers who will do anything they can to avoid changing the ap-
plication, no matter how bad it is. Hardware upgrades can only
ever “ameliorate” a subset of performance problems. If the
system is CPU bound, then adding more CPU cycles may
make things better, but the benefits that you get will be, at best,
the 2x every 18 months of Moore’s Law. But most systems
with performance problems these days are not CPU bound,
and even when they are, there is also a real possibility that add-
ing more CPU will actually further reduce the performance of
the system by increasing contention on shared structures. The
performance benefits of fixing the software can be orders of
magnitude greater and, if done well, make it so that the system
is better able to scale with hardware upgrades. The cheap hard-
ware theory primarily applies to CPU, although larger, cheaper
memory can also help but often requires that the box is
changed anyway. Storage system upgrades are rarely cheap.
Although $/GB has been falling rapidly, $/GB/s and $/IOP/s
have not, and reducing I/O performance problems will always
involve increasing either one or the other of these throughput

“The title of software
professional comes

with a requirement to deliver
quality product, not just hope

that hardware will
bail you out.”

1	Here’s the full quote from Dr. Scalzo’s book: “Person hours cost so much
more now than computer hardware even with inexpensive offshore out-
sourcing. It is now considered a sound business decision these days to throw
cheap hardware at problems. It is at least, if not more, cost effective than
having the staff [sic] tuned and optimized for the same net effect. Besides,
a failed tuning and optimization effort leaves you exactly where you start-
ed. At least the hardware upgrade approach results in a faster/better server
experiencing the same problem that may still have future value to the busi-
ness once the fundamental problem is eventually corrected. And, if nothing
else, the hardware can be depreciated, whereas the time spent tuning is al-
ways just a cost taken off the bottom line. So, with such cheap hardware, it
might be a wiser business bet to throw hardware at some solutions sooner
than was done in the past. One might go so far as to make an economic
principle claim that the opportunity cost of tuning is foregoing cheap up-
grades that might fix the issue and also possess intrinsic value. Stated this
way, it is a safe bet that is where the business people would vote to spend.”

�The NoCOUG Journal

metrics. I would guess that most of the readers of your maga-
zine would think of themselves as software professionals. To
me that title comes with a requirement to deliver quality prod-
uct, not just hope that hardware will bail you out.

Saying No to NoSQL

Just when I thought I’d finished learning SQL, the NoSQL
guys come along and tell me that SQL databases cannot
deliver the levels of performance, reliability, and scalability
that I will need in the future. Say it isn’t so, Graham.

Well we hear much pontificating about the benefits of
NoSQL, but so far I haven’t seen any audited industry-stan-
dard benchmark results as proof points. I have seen many
claims from NoSQL evangelists that traditional RDBMSs can-
not meet their requirements, only to find on further analysis
that they tried a single open-source RDBMS, ran into some
problems, and generalized from there. It is also interesting in
the light of your previous question about using cheap hard-
ware to try and resolve performance problems, that NoSQL
solutions are developer intensive, as much of the functionality
that would be provided by a SQL RDBMS has to be hand-
crafted for each solution. But I’m sure over time we will see
winners appear from the current plethora of NoSQL products.

What about Big Data? Can’t SQL databases handle big data
then?

To me the case for Big Data comes down to two key areas:
unstructured data and high-volume, low-value data such as
web logs. This data could be stored in an RDBMS, but more
typically what we are seeing customers doing is using Big Data
techniques to extract information from these types of data
sources and then storing this data in their RDBMS. This is the
type of environment that Oracle’s recently announced Big
Data Appliance is designed to help with.

The NoSQL salesmen insist that I need “sharding” instead of
partitioning. Did they get that right?

Partitioning in the database has the huge benefit of being
transparent to your application and your application devel-
oper. Using sharding requires that you move the management
of the shards into your own application code. Do you want to
develop your own code to perform queries across all of your
shards and to do two-phase commits when you need to do a
transaction that would affect multiple shards? And is such
custom code development really cheap?

Professor Michael Stonebraker claimed in the 100th issue of
the NoCOUG Journal that traditional SQL databases should
be “sent to the home for tired software.” Has innovation re­
ally stopped at 400 Oracle Parkway? Has Larry sailed off into
the sunset?

There have been many technologies that have claimed that
they will replace SQL RDBMS over the last 30 years, including
object databases and XML. SQL databases are still alive and
well and contain the mission-critical data that is the lifeblood
of businesses. Having a standard language, SQL, and a sound
basis on relational theory means that SQL databases have
stood the test of time in an industry where hype and fashion

are rampant. In terms of 400 Oracle Parkway (where most of
database development is housed) there are still many new fea-
tures being built into the Oracle database that will increase the
benefit that customers get from using the product. But you will
have to wait for the product announcements to hear about
those. And, of course, as the next America’s Cup is in San Fran
cisco. Larry is still very much around and involved.

The Whole Truth About Exadata

Is Exadata a case of solving performance problems with hard­
ware upgrades? Put another way: is the performance improve­
ment from Exadata exactly what one might expect from the
bigger sticker price, no more and no less?

Well the stock answer is that it is an engineered system that
is designed to be capable of very high throughput. The soft-
ware allows us to utilize the hardware much more effectively.
There are customers who have upgraded to Exadata and seen
the hardware upgrade benefits, typically 5–10x performance
improvement, which is enough to get them into ads in The
Economist and airports around the world. But the customers
who have fully exploited the capabilities of Exadata have seen
orders of magnitude more benefit. In our Day of Real World
Performance presentations we load, validate, transform, col-
lect optimizer statistics, and run queries on 1TB of raw data in
less than 20 minutes. That sort of performance can transform
what IT can deliver to the business and has far greater value
than the sticker price.

Is Exadata as good for OLTP workloads as it is for OLAP?
(You can be frank with me because what’s said in these pages
stays on these pages!)

Well Exadata is certainly a very capable OLTP box. It has
fast CPUs and can perform huge numbers of very fast I/Os
with large numbers of IOPS by utilizing the flash cache in the
storage cells. And OLTP performance is all about CPU horse-
power and large numbers of IOPS. But I think it is fair to say
that there is less “secret sauce” in Exadata as an OLTP platform
than there is for data warehousing.

Show Me the Way

Thank you for answering my cheeky questions today. Someday,
I hope to know as much about Oracle Database performance
as you. Can you show me the way? Your book, perhaps?

 Well I think that the key to being a good performance ana-
lyst is making sure that you spend time upfront correctly scop-
ing the problem and then avoid jumping to conclusions while
doing a top-down analysis of the data. When you are looking
for solutions, make sure that the solution that you are imple-
menting matches the scope of the problem that you started
with, as opposed to a mismatched scope. The classic example of
scope mismatch is making a database-level change, like chang-
ing an init.ora parameter, to solve a problem that is scoped to
a single SQL statement. Much better to use techniques like SQL
Profiles or SQL Baselines that will only affect the single SQL.
Using that approach will get you a long way. As far as my book,
I guess I still need to write it; it will be a cheeky book! s

� May 2012

Oracle WebLogic Server 11g
Administration Handbook

A Book Review by Brian Hitchcock

Details

Authors: Sam Alapati

ISBN: 978-0-07-177425-3

Pages: 528
Year of Publication: 2011
Edition: 1
List Price: $60
Publisher: Oracle Press
Overall Review: Excellent resource
for anyone new to WebLogic Server.

Target Audience: Anyone that will be managing WebLogic
Server.

Would you recommend this book to others: Yes.
Who will get the most from this book? Administrators.

Is this book platform specific: No.
Why did I obtain this book? See overall review below.

Overall Review

I need to be prepared to support Fusion Applications. I
found many resources, and among them were three books
from Oracle Press. This is the second of them. The first was
Managing Oracle Fusion Applications and the third is Handbook
and Oracle Fusion Middleware 11g Architecture and Management.
Since I have reviewed other Oracle Press books, they sent me
copies of each to read and review.

Fusion Applications is built on top of Fusion Middleware,
and WebLogic Server is a central piece of Fusion Middleware.
WebLogic Server (WLS) provides the “container” where Java
EE applications are deployed. The business functionality of
Fusion Applications is provided by Java EE applications, which
explains why WebLogic Server is critical to supporting Fusion
Applications.

Even if you won’t be supporting Fusion Applications, Web
Logic Server is replacing Oracle Application Server in various
Oracle products. As an example, the latest version of Oracle
Enterprise Business Suite (EBS), version 12.2, will have Web
Logic Server.

I’ve been working with WebLogic Server and Fusion Appli
cations for about a year, and I wanted to read this book because
I had several specific issues I wanted to learn about. I saw many
WebLogic Server instances go into the state FAILED_NOT_
RESTARTABLE, and I needed to understand what causes this.
While this book never mentions this issue by name, I did learn

how the WebLogic Server instance goes through various states
while starting up. When this process encounters issues, this is
when the instance fails.

This book is very dense with specific technical detail. I
learned many things about managing WebLogic Server. The
focus is on how things work so that you can implement and
manage WebLogic Server in your environment. Many issues
that had been confusing to me about WebLogic Server were
cleared up by reading this book.

Introduction

The introduction explains that WebLogic Server is mainly
used to deploy web applications. It provides the environment
specified by the Java Enterprise Edition (Java EE) standards to
support enterprise Java applications. Further, WebLogic Server
is itself a Java program that supports various services needed
by Java EE applications. I agree with the author’s view that
WebLogic Server presents an overwhelming number of new
concepts that a beginner must deal with. I’ve been there very
recently myself. The target audience is explained to be WebLogic
Server administrators, middleware administrators, and DBAs
that need to support WebLogic Server. This is important in
that many DBAs will get tasked with WebLogic Server support,
if only because it is another Oracle product. The difference
between web server and web application server (such as Web
Logic Server) is explained clearly. I was reassured to read that
no prior knowledge of WebLogic Server or Java programming
is assumed or needed.

Chapter 1—Installing WebLogic Server and Using the
Management Tools

The three major administrative tools for managing Web
Logic Server are identified here: the Administration Console,
the Node Manager utility, and the WebLogic Scripting Tool
(WLST). By the way, it turns out that you must like acronyms
to work with WebLogic Server. The available versions of Web
Logic Server are explained (SE, EE, and Suite). The author
points out that there is a lot of new terminology to learn: for
example, the concept of a “machine” in the WebLogic Server
world, which can be confusing. This caught my attention be-
cause I was confused about this term myself. The list of terms
that is explained, each in detail, is lengthy and welcome. I
learned a lot from this. Following this is a section on WebLogic
Server concepts. Again, I learned a lot. Specific examples in-
clude Configuration and Runtime MBeans, Listen Ports and
Listen Threads, and why there are two versions of the Java

BOOK REVI EW

�The NoCOUG Journal

Virtual Machine (JVM) included with WebLogic Server.
The chapter then covers the WebLogic Server installation

process. The author covers this in detail, and I installed Web
Logic Server and the sample applications on my laptop. I high
ly recommend this. Using the Administration Console, logging
in, and navigating all make a lot more sense when you are
using your own installation. WebLogic Scripting Tool is also
covered and many examples are explained.

Chapter 2—Administering WebLogic Server Instances

Managing WebLogic Server instances is the focus of this
chapter. The Admin Server and Managed Servers are explained
as well as the difference between development and production
modes. The many options available for starting and stopping
WebLogic Server instances are covered. Node Manager capa-
bilities, as well as how to start, stop, monitor and configure
Node Manager, are covered. When WebLogic Server starts up
it goes through various “states,” ending up in a RUNNING state
ready to accept and service client requests. This process, re-
ferred to as the “life cycle,” was something I had not seen be-
fore. It helped me understand what causes WebLogic Server
instances to fail.

This chapter also provides an introduction to the Ant tool.
Ant is a Java-based tool that uses XML build files to start and
stop WebLogic Server instances as well as many other tasks.
Again, this helped me because I had seen the message “BUILD
SUCCESSFUL” many times but didn’t know this was generated
from Ant.

Chapter 3—Creating and Configuring WebLogic Server Domains

The concept of a domain is central to understanding Web
Logic Server. The structure of a domain is covered, including
server instances, server clusters, and the directory structure
that is set up when you create a domain. The XML configura-
tion file for the domain is explained. MBeans come up again as
these are the mechanism Java uses to monitor and change the
configuration of servers within the domain.

When you make changes to the configuration of any of the
servers in a domain, you do so through the Administration
Console. This process makes changes to the editable MBeans,
and the Admin Server uses a Lock and Edit Mechanism to
make sure only one person is making configuration changes at
a time. This process is covered as well as creating domain tem-
plates. These templates are useful when you need to create
many WebLogic Server domains.

The steps needed to create a domain are presented, which
extends the installation process begun in Chapter 2. Advanced
domain configuration options and the default network chan-
nel as well as the administration channel are explained.

Chapter 4—Configuring Naming, Connections,
Transactions, and Messaging

The goal of this chapter is to explain how WebLogic Server
provides services needed by enterprise applications. The ser-
vices covered are naming, database connectivity, transactions,
and messaging. Each of these services is supported by a differ-
ent part of Java, and each is covered. JNDI, which is Java
Naming and Directory Interface, provides a way to connect to

naming and directory services such as DNS and LDAP. Java ap-
plications use JNDI to find resources by name. JDBC, of course,
is used for database connectivity. JTA, Java Transaction API, is
used to control transactions. The Java Messaging Services, JMS,
allow Java applications to create, send, and receive messages.

How each of these services works, as well as how to config-
ure each, is covered in detail. I found the section on JDBC to
be very valuable. It explains data sources, which WebLogic
Server uses to set up pools of database connections. Creating
and configuring data sources is discussed. The JMS section is
very thorough.

Chapter 5—Configuring the WebLogic Server Environment

Here we learn about thread pools, which WebLogic Server
uses to service requests. The management of thread pools is
how WebLogic Server manages its run-time performance.
Each request is assigned to an execute thread. WebLogic Server
automatically adjusts the number of threads available as the
workload varies. Work managers are covered in detail. They
allow you to set up different priorities for different requests.

When there are too many requests, WebLogic Server can
become overloaded. The options for dealing with overload and
failure conditions are covered. Especially interesting to me
was the coverage of dealing with stuck threads. This is often
the cause of managed servers going to FAILED_NOT_
RESTARTABLE state.

The steps needed to set up WebLogic Server self-health
monitoring are presented, followed by a more detailed look at
how to optimize the network configuration. This involves cre-
ating custom network channels.

Chapter 6—Monitoring and Troubleshooting WebLogic Server

WebLogic Server provides many ways to monitor the server
instances. Overall, these monitoring features are part of the
WebLogic Diagnostic Framework (WLDF). The monitoring
dashboard is part of the Administration Console. Examples
are shown for generating a diagnostic image capture, which
provides a snapshot of what is happening inside the server and
other components like JDBC and JMS. These images can be
saved in a diagnostic archive.

We have learned in earlier chapters that MBeans are used in
Java to store server configuration. The information in MBeans
can be gathered by configuring metric collection. The Harvester
component of WLDF is then used to collect the specified met-
rics on the schedule you set up.

WLDF also provides Instrumentation, which means code
that can be inserted into server instances and deployed appli-
cations to generate extra instrumentation, which is useful
when diagnosing server and application issues. The Data Ac
cessor component of WLDF is provided to retrieve the diag-
nostic information that has been captured. The navigation
needed to access the monitoring screens within the Adminis
tration Console is shown, and examples of WLST script for
monitoring are provided.

WebLogic Server provides logs for both server instance run-
time information and application events. The different logs for
the domain; each managed server; and the various subsystems,
such as JDBC and JTA, are described. The structure of the logs,

10 May 2012

how to view them, and how to maintain them are all explained.
This chapter concludes with a discussion of WebLogic

Server troubleshooting. Java thread dumps are covered as well
as the core dumps generated when a JVM crashes.

Chapter 7—Working with WebLogic Server Clusters

WebLogic Server clusters provide scalability and reliability
by providing load-balancing and failover capabilities. This
chapter covers how to set up and manage WebLogic Server
clusters. WebLogic Server clusters always belong to only one
WebLogic Server domain, and the Administration Server for
the domain does not run on any of the cluster nodes. This
means that for a two-node cluster, for example, you need three
nodes all in the same domain. Two of these nodes are the
WebLogic Server cluster where applications are deployed, and
the third node is where the Administration Server runs.

Three cluster architectures are discussed: basic, multitier,
and proxy. The main difference among these is where the web
tier, presentation tier, and object tier (the business logic) are
running in the cluster.

You can configure a cluster using a WebLogic Configuration
Wizard, the Administration Console, or WLST commands.
This process involves creating the managed servers that will
become the cluster members, creating the cluster itself, and
then adding nodes to the cluster.

The options for starting and stopping are covered as well as
how to monitor a cluster from within the Administration
Console. WebLogic Server offers various algorithms for load-
balancing servlets, JSPs, EJBs, and RMI objects on the cluster.

When a server failure occurs, the cluster can migrate an
entire server or specific services to another server in the cluster,
depending on the configuration chosen.

Chapter 8—Understanding WebLogic Server Application
Deployment

Finally, the whole point of using WebLogic Server comes
into focus. We set up WebLogic Server to deploy enterprise ap-
plications, and now we learn how deployments are done. The
various types of applications that can be deployed in WebLogic
Server are discussed. Applications are deployed to targets such
as managed servers and clusters. The tools supplied with
WebLogic Server for deploying applications are described.

WebLogic Server has been described earlier as a container
for Java applications. When a Java application is deployed to a
managed server, that sever needs to know the environment
and product-specific configuration details. These are handled
by specifying deployment descriptors and annotations. Deploy
ment plans support moving an application from one server to
another. A common example is moving an application from
test to production. The deployment descriptors are exported
from the test server to a deployment plan. This is then edited
for the production environment.

Applications are packaged into an archived file or an ex-
ploded archive directory. The details of both and the reasons
to use one or the other are covered. Using the Administration
Console to deploy an application is presented, and many
screenshots help explain the process. Examples of deployment
using WLST scripts are also shown.

Chapter 9—Managing WebLogic Server Security

This chapter covers many topics relating to WebLogic secu-
rity. We begin with an overview of how WebLogic Server secu-
rity relates to Java EE security. WebLogic Server uses Oracle
Platform Security Services, which was designed to secure Fu
sion Middleware. OPSS provides many security services, in-
cluding authentication, SSO, authorization, security providers,
and security stores.

WebLogic Server security focuses on securing server re-
sources. These include the Administration Console, WLST,
and the various server logs. The logical grouping of the various
security resources is called a “security realm.” The configura-
tion of all security providers and users, etc., is contained in the
security realm, and all of this is stored in an LDAP server or an
RDBMS.

Security providers handle specific security functions, such
as authentication, identity assertion, and role mapping. The
default security realm (myrealm) is created when you create a
domain and contains all the required providers. Configuration
options for providers are discussed, and screenshots from the
Administration Console are included.

Users, groups, roles, and security policies are defined, and
the process to create and configure each is covered. The con-
figuration of the embedded LDAP server is explained next, as
well how to migrate to a RDBMS security store. This chapter
finishes with SSL configuration and overall Best Practices for
WebLogic Server security.

Chapter 10—WebLogic Server Performance Tuning

The author tells us that performance tuning covers a broad
area, including OS, JVM, server instances, databases, transac-
tions, and more. This means that this chapter can only touch
on some highlights of this subject. For each component, the
critical issues for performance tuning are identified.

For the WebLogic Server, thread management and network
I/O are the hot issues. For WebLogic Server, configuring Work
Managers can help, but too much of this can actually hurt. For
network I/O, tuning muxers, which read incoming requests on
a server, using network channels, and tuning various network
layer parameters can improve performance.

Tuning the JVM focuses on memory management. The sec-
tion explaining how the JVM uses memory was great. I didn’t
know how this worked. The issues around garbage collection
are interesting, and I learned a lot reading about the configura-
tion options available. Overall best practices for performance
tuning are presented.

Conclusion

Oracle is moving to Java EE applications, and this means
WebLogic Server is replacing Oracle Application Server. Any
one that supports Oracle systems will likely run into WebLogic
Server in the not-too-distant future. This book is densely
packed with technical detail for those that will be WebLogic
Server administrators. I learned a great deal from reading this
book, and it has helped me on the job. s	 © 2012, Brian Hitchcock

The statements and opinions expressed here are the author’s
and do not necessarily represent those of Oracle Corporation.

Two Million Database Professionals Count on One Solution.

Simply the best for Oracle database professionals - Toad 11. Supported by over a decade
of proven excellence, only Toad combines the deepest functionality available, extensive automation,
and a work� ow that enables database professionals of all skill and experience levels to work
e� ciently and accurately. Countless organizations empower their database professionals with Toad.
The best just got better.

Watch the video at www.quest.com/Toad11SimplyBetter.

© 2011 Quest Software, Inc. ALL RIGHTS RESERVED. Quest, Quest Software and the Quest Software logo
are registered trademarks of Quest Software, Inc. in the U.S.A. and/or other countries. All other trademarks

and registered trademarks are property of their respective owners. ADD_Toad_FullPage_US_INK_201108

12 May 2012

PERFORMANCE
CORNER

Oracle Big Data
Appliance

by Gwen Shapira
This article is the second of a series by Pythian experts that
will regularly be published as the “Performance Corner” column
in the NoCOUG Journal.

T
he main software components of Oracle Big Data
Appliance are Cloudera Hadoop and Oracle NoSQL.
Both are non-relational databases that were de-
signed for high scalability. But as we’ll soon see, they

are very different in their architecture, design goals, and use
cases. The most striking thing about Cloudera Hadoop and
Oracle NoSQL is that they are open source and available for
download from Cloudera and Oracle websites. You can experi-
ment with the software, develop prototypes, and explore possi-
ble architectures before you commit to purchase a new device.
Of course, you can also deploy the software on your own hard-
ware without ever purchasing a device from Oracle.

Oracle NoSQL

NoSQL is a recent development in the data storage architec-
ture landscape. Popular websites such as Amazon, Google, and
Facebook encountered a growing need to scale their databases
across large clusters and between multiple data centers while
keeping latency to only few milliseconds for 99% of the trans-
actions.

Existing database solutions proved either too unreliable,
had too high latency, were not scalable enough, or were too
expensive. These organizations realized that different data sets
impose different requirements, and a user’s shopping history
does not have the same consistency, durability, and isolation
requirements that the transaction history of a bank account
will require. They are willing to relax consistency in return for
increased scalability, large-scale distribution, high availability,
and low latency. In addition to not being fully ACID, NoSQL
stores do not implement the relational model. They typically
support a simpler data model such as key-value pairs, support-
ing data retrieval by the key but with limited support for join
operations or secondary indexes.

Oracle NoSQL is a key-value store, based on Berkeley DB
Java Edition. It is distributed and designed for low latency,
high volume, and high availability.

As a distributed data store, Oracle NoSQL is installed on
multiple servers. Those servers, typically physical devices, are
referred to as “storage nodes.” Each one of the storage nodes
contains one or more “replication nodes,” which are grouped
into “replication groups.” The replication groups are the way
Oracle NoSQL minimizes the possibility of data being lost or
unavailable as the result of a server crash. Oracle recommends
that each storage node will contain only one replication node.

Each replication node in a replication group contains iden-
tical data and is placed on a separate storage node, perhaps in
different data centers. In the event of a server crash, only one
partition will be lost, and the data will still be accessible on
other storage nodes. In each replication group, one of the rep-
lication nodes is designated the “master node,” and this is the
only node that can service data modification. The other nodes
in the group are read-only but can become the master node if
the master node fails. The number of nodes in a replication
group determines how many servers can fail while the system
is still available.

The data model of Oracle NoSQL is a variation of a key-
value map. The key is a string, and it has “major key path” and
“minor key path” components. The value can be of any data
type. Records are allocated to specific data partitions accord-
ing to their keys and are stored in the replication group as-

Gwen Shapira

Storage Nodes

Replication group Master replica

Application
Server

Client Driver

Application
Server

Client Driver

“A user’s shopping history does not have the same ACID requirements that
the transaction history of a bank account will require.”

13The NoCOUG Journal

signed to the partition. Records with the same major key are
assigned to the same partition and are therefore stored on the
same physical devices. This means that all records with the
same major key can be updated in a single transaction, and it
also means that if there are only a small number of major keys,
the load on the physical servers will not be balanced.

Oracle NoSQL allows the application developers to choose
the desired level of consistency and durability for each record
and each operation. This choice has a significant impact on
the performance of the system and its reliability. Most NoSQL
databases offer this level of flexibility, and benchmarks of
those databases often show amazing performance simply be-
cause the developers reduced consistency and durability to
levels that may not be acceptable in practical applications. It is
always recommended to read the small print when encounter-
ing impressive benchmark results.

With Oracle NoSQL, developers control the durability of
an operation with two decisions: how many nodes must ac-
knowledge a write operation before it is considered successful
and whether the new data is actually written to disk before the
node acknowledges the operation.

Write operations can be acknowledged by all replication
nodes in the group, a majority of the replication nodes, or
none of the replication nodes. Requiring all nodes to acknowl-
edge each write operation means that all nodes will return the
same consistent information on subsequent reads, but it also
means that write operations will take longer, and if a single
node crashes, all write operations to the group will fail.

In the other extreme, if only the master has to acknowledge,
write operations will continue to happen even if only one
node is left in the group. But reads from the slave nodes may
return data that is older than the data in the master node, be-
cause newly written data will not be sent immediately from the
master to the slave nodes.

When a node acknowledges a write operation, it will either
write the data to disk before acknowledging a successful op-
eration (the way a redo buffer is written immediately on com-
mit) or it can acknowledge the operation immediately and
write to disk later (the way DBWR writes dirty buffers to
disk)—it can send the write request to the operating system
immediately but not force the OS to write the data to disk
before returning control to the NoSQL process.

The other major choice that Oracle NoSQL leaves to devel-
opers is the consistency level. Developers can decide for each
read operation whether they need the most recent data writ-
ten to the system or whether slightly older data will do. For
example, when Facebook displays a list of notifications sent to
a specific user, it is fine if the list of messages is actually few
minutes old and the most recent messages will show up with
a small delay. When you check out from an online store, you
do need the shopping basket to list your most recent pur-
chases.

Application developers can choose between:

➤	 Absolute consistency, where data is read from the mas-
ter and guaranteed to be the most recent.

➤	 No consistency, where data is served from the least-
loaded slave regardless of how new it is.

➤	 Time-based consistency, where the developer specifies
how recent the data should be and the client searches
for a node that will satisfy this condition.

➤	 Version-based consistency, where the developer speci-
fies a version number and requires the data to be of that
version or newer. This is normally done to maintain
consistency between multiple read-modify-write opera-
tions.

Note that unlike many other NoSQL databases, Oracle
NoSQL does not support eventual consistency, where the
server stores multiple conflicting versions of the data and re-
turns all versions to the client during read operations, and the
client resolves the conflict and updates the database with the
result.

Cloudera Hadoop

Oracle Big Data Appliance contains Cloudera’s version of
Apache Hadoop. Hadoop is a platform for storing and process-
ing large amounts of unstructured data—for example, logs
from web servers of online retailers. These logs contain valu-
able data: what each customer looked at, how long he stayed in
the website, what he purchased, etc. But these logs are just text
files; like Oracle’s alert log, they contain repetitious data, useless
messages from developers, and several different text formats. In
addition, log files have no indexes; if you look for specific piece
of information, you are required to read the whole file. These
attributes mean that unstructured data will typically require
more disk space, disk bandwidth, and processing resources
than equivalent data loaded into a relational database.

Hadoop is an architecture designed to use inexpensive and
unreliable hardware to build a massively parallel and highly
scalable data-processing cluster. It was designed so that add-
ing servers will result in a proportional increase in load capac-
ity and that server failure will result in performance decline
but never in system failure or wrong results.

To support these design goals, the architecture is shared
nothing: Nodes rarely talk to each other, so there is little over-
head involved in synchronizing the processing servers, and
each node uses its own local disks. Data is spread across the
cluster when it is loaded, and computation usually runs on the
server where the data is located. This allows spreading the load
across the cluster without running into network bottlenecks.
In usual database architectures, data is brought from the SAN
to the processors. Hadoop brings the processing to the data.

Hadoop is made of two components: HDFS, a distributed
and replicated file system, and Map-Reduce, an API that sim-
plifies distributed data processing.

HDFS provides redundant storage for massive amounts of
data. It is designed for use cases similar to those of an enter-

“In usual database architectures,
data is brought from the SAN to

the processors. Hadoop brings the
processing to the data.”

1� May 2012

prise data warehouse: Data is loaded once and scanned com-
pletely by each processing job. File sizes are typically very large,
and to reflect that, Hadoop’s default block size is 64MB (com-
pare with Oracle’s 8KB!). Sustained high throughput is given
priority over low latency, and there is no random access to
files in HDFS. In addition, the files are read only: They are
created; data is loaded into them; and when loading is fin-
ished, the file is closed and no additional changes can be made
to the file.

Similar to Oracle NoSQL, HDFS also improves reliability
by copying each block to at least three different servers in the
cluster. The replication doesn’t just provide failover in case a
node crashes; it also allows multiple jobs to process the same
data in parallel on different servers. (http://hadoop.apache.
org/common/docs/current/hdfs_design.html)

Map-reduce is a method to distribute processing jobs
across the servers. Jobs are split into small, mostly independent
tasks. Each task is responsible for processing data in one block,
and whenever possible it will run on a server that stores that
block locally.

As the name suggests, map-reduce has two phases: map and
reduce. Map tasks filter and modify the data. This is analogous
to the “where” portion of a query and to non-aggregating
functions applied to the data. The reduce phase applies the
data aggregation: group by and aggregating functions such as
sum and average.

Since map-reduce jobs are limited to filtering and aggregat-
ing, most complex analytical queries do not translate well to
map-reduce and are therefore difficult to implement in
Hadoop.

Hadoop is a far more basic system than a relational or even
a NoSQL database. It provides services similar to the operating
system while leaving the vast majority of the work to develop-
ers. As with any platform, you will not be surprised to discover
than software was written to run on top of Hadoop and pro-
vide better tools for data loading and processing.

Notable examples are as follows:
➤ Pig and Hive: Both are query languages. Instead of writ-

ing map-reduce jobs in Java from scratch, Pig and Hive
are high-level languages that make this querying far
easier and even accessible to non-programmers. Hive is
very similar to SQL and even requires schema defini-
tions for the data in HDFS files. Pig looks far more like
explain plans, giving developers more control over the
way data is accessed and processed.

➤ Sqoop: Connects to relational databases such as MySQL
and Oracle and allows transferring data between the
database and Hadoop.

➤ Flume: Aggregates log files from multiple sources and
loads them into Hadoop.

➤ Oracle Loader for Hadoop: Allows users to build map-
reduce jobs that load data into Oracle. Essentially the
last step in the reduce process, it generates Oracle data
blocks that are loaded directly into the database. It is the
fastest way to load Hadoop data into Oracle.

There are many more tools designed to make life with
Hadoop easier. Hadoop developers and administrators are
encouraged to search for them, as there is no need to reinvent
the wheel.

Oracle NoSQL—Design Considerations

A mobile application like Draw Something™ is a classic use
case for a NoSQL database. The use case is very simple:

“Two players alternate turns between drawing a picture for
the other to guess. The person drawing chooses one of three guess
words to draw. After the drawer has finished drawing, the guesser
will view an instant replay of the drawing, minus hesitation and
delays. The guesser is given a number of blank spaces and scram-
bled letters to type the guess word.” (http://en.wikipedia.org/
wiki/Draw_something)

This game is easy to model with key-value pairs. (Please
note that I am describing my idea of how I’d implement a
similar application, and all of the numbers are based on my
imagination. They do not represent Draw Something’s actual
data or architecture. It is highly unlikely that Draw Something
actually uses Oracle NoSQL.)

We’ll note that each pair of players is allowed to have only
one drawing between them at any given time: Either I’m send-

/users/shapira/log-1, blocks {1,4,5}
/users/shapira/log-2, blocks {2,3,6}

1

1

2

1 2 2

3

3 3

4

4

4

5

5

5

6 6 6

/users/shapira/log-1, blocks {1,4,5}
/users/shapira/log-2, blocks {2,3,6}

1

1

2

1 2 2

3

3 3

4

4

4

5

5

5

6 6 6

Start
Job 1

Start
Job 2

Map

Map

…

Map

Hadoop Job

Map

Map

…

Map

Hadoop Job

Combine

Combine

Reduce

Reduce?

…

Reduce?

Reduce?Reduce?

Reduce?

Reduce?

Reduce

Reduce?

…

Reduce?

Reduce?Reduce?

Reduce?

Reduce?

Stop
Job 1

Stop
Job 1

Job 1

Stop
Job 1

Results

Stop

“The idea is to spread the I/O
and processing load among

many cheap machines instead
of investing in a few
expensive servers.”

www.apress.com | @apress

EXPERT ORACLE AND JAVA SECURITY | Coffi n
ISBN-13: 978-1-4302-3831-7 | Sep. 2011 | 472pp.

AGILE ORACLE APPLICATION EXPRESS | Cimolini, Cannell
ISBN-13: 978-1-4302-3759-4 | Mar. 2012 | 200pp.

ORACLE CORE: ESSENTIAL INTERNALS FOR DBAS AND DEVELOPERS | Lewis
ISBN-13: 978-1-4302-3954-3 | Nov. 2011 | 280pp.

EXPERT ORACLE EXADATA | Osborne, Johnson, Põder
ISBN-13: 978-1-4302-3392-3 | Aug. 2011 | 588pp.

ORACLE DATABASE 11G PERFORMANCE TUNING RECIPES | Alapati, Kuhn, Padfi eld
ISBN-13: 978-1-4302-3662-7 | Aug. 2011 | 592pp.

FROM APRESS
The Ultimate Guides for Oracle Users

NOCOUG Journal Ad_Apress.indd 1 4/26/12 3:23 PM

16 May 2012

ing you a drawing or you’re sending me a drawing. I am not
allowed to send you a second drawing while you are guessing.

Because there is one and only one drawing for each two
players, the key can be the name pairing: name1-name2 for
example. We can create name2-name1 as a dummy key at the
same time to avoid duplicates, or we can always sort the names
alphabetically. The value will be the drawing, which sounds
like a small video. We’ll also want to store a bit that says whose
turn is it now.

Lets guess that Draw Something has about 100M users; if
each has 10 friends on average, we are looking at 1 billion keys,
each at a size of 100 bytes. Let’s say each value takes 20KB and
we are looking at 20TB of data. To be safe, we’ll want each re-
cord replicated three times. Why? A replication factor of 3 is
recommended by Oracle (http://docs.oracle.com/cd/NOSQL/
html/AdminGuide/store-config.html#rep-factor) and typi-
cally used by NoSQL stores. If you spread your servers across
multiple data centers, you will want to consider a larger repli-
cation factor to allow local reads from each data center. With
the replication factor, we are looking at around 60TB of data.

How would we configure our NoSQL database for this
data? Let’s assume each of our servers has 2TB of storage avail-
able for data. We will be looking at 30 nodes to satisfy our
storage requirements.

Now let’s look at the workload. Most of the operations will
be updates—replacing an existing image with a new one; a few
create operations from users who have new friends; and there
are almost no deletes. We expect exactly one read for every
write: I draw something and you look at it and draw back.
With this read-write mix, we’ll want more replication groups,
since only one node in the group can service writes, and a
lower replication factor, since we don’t need many slave nodes
to handle a large read load.

With 30 storage nodes, we’ll define 10 replication groups of
three replication nodes each. More replication groups will
allow higher write throughput but will cause the nodes to be-
come unbalanced. For example, if we went with 30 replication
groups to make sure we have a master node for each storage
node, we will end up with three replication nodes on each stor-
age node. In the current version of Oracle NoSQL, there is no
way to make sure all master nodes end up on the separate stor-
age nodes and prevent a single node from potentially becoming
a bottleneck. To be on the safe side, we will stay with a balanced
configuration of one replication node per storage node.

Each replication group requires at least one data partition.
However, it is recommended to have many more, since future
versions of Oracle NoSQL will allow adding replication groups
and nodes, and the data will be balanced between the groups
by moving partitions between the nodes. Too few partitions
and there will be no room for growth, or the nodes will be-

come unbalanced. While there is some overhead involved in a
large number of partitions, we still recommend a very large
number of partitions to avoid the risk of running into this
limit: let’s say, 30,000 partitions for our example.

At this point we have a topology for our Oracle NoSQL
cluster, and we are ready to install. It should go without saying
that this configuration should be well tested before it goes
live—especially for an unbalanced load that can cause a node
to become a bottleneck as the demands from the database
increase. At this release of Oracle NoSQL, once the cluster is
defined, nodes cannot be added, so plan on enough space to
allow for a year of growth.

Once the cluster is installed, we need to define the size of the
memory. The main data structure of Oracle NoSQL is a b-tree,
and the database uses an internal cache called “JE cache” to
store the blocks in this structure. With 1TB of data per node,
there is no way we can fit all our data into memory, but we can
improve performance significantly if we can fit most of the
internal blocks of the b-tree into memory. In addition to the
JE cache, Oracle NoSQL also uses the file system (FS) cache. FS
cache can be used more effectively than JE cache, since records
in FS cache don’t have Java object overhead.

The Oracle NoSQL administration guide gives the follow-
ing formula on how to size disk I/O based on the expected
cache hit ratios and required number of transactions per sec-
ond: http://docs.oracle.com/cd/NOSQL/html/AdminGuide/
select-cache-strategy.html#cache-size-advice

((read + create + update + delete)ops/sec * (1 - cache hit fraction)) /
Number of replication nodes) = required disk IOPs/sec

In our system, let’s assume 100,000 transactions per second
and a 50% cache hit ratio:

 (100,000*0.5)/30 = 1666.67 IOPs/sec = around 10 disks.

So either 10 disks per server are required or a larger number
of storage nodes and replication groups.

Oracle NoSQL arrives with the DBCacheSize utility, allow-
ing you to estimate the cache size per storage node, and the
Oracle NoSQL Administrator Guide has a spreadsheet to help
calculate the Java heap size.

To get an idea of the IOPs and latencies that are supported
by Oracle NoSQL, I suggest taking a look at Oracle’s white
paper. (https://blogs.oracle.com/charlesLamb/entry/oracle_
nosql_database_performance_tests)

On a relatively small 12-node cluster, an insert throughput of
100,000 operations per second was achieved with a 95% latency
of 7ms. This performance is also achievable on Oracle database,
but it will require a very fast, well-tuned storage system.

Hadoop Design Considerations

The classic use case for Hadoop is processing web server
logs to gain insight about website visitors and customer ac-
tivities. Another favorite use case is analyzing other text files
such as blog posts, Twitter streams, and job posts to gain in-
sights on trendy topics, customer complaints, and the job
market. As an Oracle consultant, I typically see Hadoop used
to run ETL processes: Data is extracted from the OLTP data-
base, processed, aggregated, and sometimes mixed with results
from the processing of unstructured data. The results are

“The big question is, do we want
to buy Oracle Big Data Appliance,

or just run the software on our
own cluster?”

17The NoCOUG Journal

loaded into the enterprise data warehouse, typically running
on Oracle database, where the business analysts can use their
BI tools to process the data.

As an example, we’ll take a very simple use case where we go
through website log files and, based on IPs, determine how many
users from each state made a purchase at our online store.

The map stage is simple: we go through the website logs,
select the log lines that indicate a successful purchase, match
the IP address in the line with a U.S. state, and if there is a
match, write the state to the output file. Each reduce task will
receive a list of occurrences of a specific state and will only
have to count how many times the state appears in the list.

To maximize performance, we’ll want to make sure there is
sufficient processing and disk bandwidth for the map and re-
duce tasks, and enough network bandwidth to send the data
from mappers to reducers and for replication between nodes.

Hadoop clusters are usually sized by their storage require-
ments, which are typically high. Suppose our website generates
100GB of log files per day. With a replication factor of 3, we
have 300GB every day and around 6TB each month. This
means that to satisfy the storage requirements of the next year,
we’ll need around 20 servers with 2TB storage in each.

The processing servers will require either one 2TB disk or
two 1TB disks. In any case, do not use RAID—since Hadoop
handles replication, RAID is neither required nor recom-
mended. A ratio of 1HD per 2 cores per 6–8GB RAM is con-
sidered a good fit for most Hadoop applications, which tend to
be I/O bounded. If the workload is particularly heavy on pro-
cessing, more cores will be required. The idea is to spread the
I/O and processing load among many cheap machines instead
of investing in few expensive servers. We typically assume that
each map or reduce job will require 1.5 cores and 1–2GB
RAM. Like any database server, Hadoop should never swap.

In addition to disk requirements, Hadoop can consume
vast quantities of bandwidth. For each TB loaded into HDFS,
3TB will be sent to different Hadoop nodes for replication.
During processing, the map tasks send the output to the re-
ducers for processing over the network, if we are processing
1TB data and not filtering, that’s an additional 1TB of data
sent over the network. Of course, the results of the reduce
phase are written to HDFS too and are also replicated three
times over the network. Nodes should be connected at 1Gb/s
at least, and if your reduce jobs generate large amounts of
output, a faster network is recommended.

Each reduce tasks only analyzes a specific portion of the
data. To aggregate IPs by state, 50 reduce jobs are necessary
(one for each state). The data is sorted and partitioned be-
tween the map and reduce job, so each reduce task can look at
its own part of the sorted data. However, it is very likely that
the reduce task for California will need to process more data
than the task for Montana. Data skew is known to cause dif-
ficult-to-solve performance problems in Oracle Database, and
it is still a problem with Hadoop. Designing jobs to avoid this
problem, aggregating by hash keys whenever possible, is a big
part of the job of Hadoop developers. As administrator of a
Hadoop system, the best you can do is use Hadoop’s fair-share
scheduler rather than the default scheduler. The fair-share
scheduler will make sure that smaller tasks will not have to

wait until the larger tasks finish processing but will get access
to processors.

Oracle Big Data Appliance—Hardware

Now that we have some idea of the hardware and configu-
ration requirements from our NoSQL and Hadoop use cases,
the big question is, do we want to buy Oracle Big Data Appli
ance, or just run the software on our own cluster?

The Big Data Appliance (BDA) has 18 Sun x4270 M2 serv-
ers per rack. Each node has 48GB RAM, 12 (Intel Xeon 5675)
cores, and 12 disks of 3TB each. Notably, there are no SSD and
36TB storage per node is far above what we planned for.

For our NoSQL applications, we need to re-plan our cluster.
Our 60TB disk space requirement can now be satisfied from
just two servers, but our IOP requirements will still demand
30. Additional appliances can be purchased and connected to
grow the cluster, but perhaps a smarter move will be to pur-
chase the memory upgrade, get the servers with 144GB RAM,
and reduce the latency by having a better cache hit ratio rather
than more disks.

For our Hadoop cluster, we will notice that we get 1 HD and
at least 4GB RAM per core. This gives more memory and pro-
cessing per disk space that most Hadoop workloads would re-
quire. To maximize the utilization on a machine, the memory
can be expended to 144GB RAM, and memory-hungry Oracle
NoSQL can be co-located with disk-hungry Hadoop. As far as
I know, this configuration was not tested by Oracle, so testing
will be needed to make sure it doesn’t overload the servers.

The biggest benefit Oracle Big Data has to offer for Hadoop
clusters is the Infiniband (IB) network. As we discussed, HDFS
replication and communication between map/reduce tasks re-
quires significant amounts of bandwidth. With Infiniband, the
problem is solved. If your Hadoop use case requires loading the
results into your Oracle data warehouse, and it happened to
be running on Exadata, IB can be used to connect Big Data
Appliance to Exadata and speed up the data-loading process.

Oracle Big Data Appliance is sold for around $500,000. Dell
sells servers with six cores, 16GB RAM, and 12TB HD for
around $6,000. Fifty-four of those will cost $324,000 and have
more cores and the same amounts of memory and storage as
Oracle’s offering. Of course, if my data processing is using a lot
of network capacity, we’ll need to add Infiniband to the mix,
which will bring the total cost up. Either way, a cluster of this
size will cost close to a half-million dollars, so if Oracle Big Data
Appliance matches your hardware requirements, it is not a bad
way to get the entire cluster pre-configured in one big box. s

Copyright © 2012, Gwen Shapira

“If Oracle Big Data Appliance
matches your hardware

requirements, it is not a bad way
to get the entire cluster pre-

configured.”

18 May 2012

This is an excerpt from the book Oracle Core: Essential
Internals for DBAs and Developers published by Apress, Nov.
2011, ISBN 1430239549; Copyright 2011. For a complete table
of contents, please visit the publisher site:
http://www.apress.com/9781430239543.

U
p to this point, everything I’ve said has been about
a single instance addressing a single database; but
Oracle allows multiple instances to share access to
a single database, which means multiple indepen-

dent data caches, multiple independent log buffers, and mul-
tiple independent SGAs—all accessing the same set of physi-
cal files, all using the same data dictionary. Without a
constant stream of negotiation going on between instances, it
would be impossible to ensure that the multiple instances
behaved consistently, and we would see cases where data
changes made by one instance were lost due to interference
from another instance. This need for cross-instance traffic is
the only significant new concept that we need to focus on
when we think about RAC—the Real Application Cluster.

The ideas we need to consider are as follows: How can latch
activity work if the thing you want to protect is in the memory
of another instance? How can you modify your copy of a data
block when another instance may have a copy that is a newer
version? If you have an execution plan that includes a particu-
lar indexed access path, how do you become aware of the fact
that another instance has dropped that index? If you are trying
to create a read-consistent copy of a data block, how do you
ensure that the SCNs of all instances that might have changed
that block are kept in synch?

There are only two pieces of functionality that we need
to address all these questions—global enqueues, and cache
coherency—and these are the main topics we will examine in
this chapter. This will give us a chance to revisit and refine
our understanding of locks and latches while focusing
on the critical changes that can cause problems with RAC.

Before looking at the mechanics, however, we will spend a
little time looking at an overview of what RAC is, why you
might want it, and the threats that the Oracle developers ad-
dressed when creating the product. We’ll also take a look at the
way the recovery mechanisms we’ve reviewed fold neatly into
RAC to allow one instance to take over when another fails.
Since most of the discussion relating to RAC is fairly abstract,
I’ve also picked a commonly-used programming feature to

BOOK
EXCERPT

RAC and Ruin
An excerpt from Oracle Core: Essential Internals

for DBAs and Developers by Jonathan Lewis
Jonathan Lewis

Router/Switch

Switch

SAN
Network
Switch

Voting
Disc

Instance Instance Instance Instance

Public Network

Private Network

NIC NIC NIC NIC

HBA HBA HBA HBA

Server Server Server Server

SAN (database storage)

make concrete points about creating an application that per-
forms well on RAC.

Note: I felt the need for a little alliteration in the chapter title,
and it is very easy to ruin things if you don’t understand a little
bit about how RAC works; but RAC doesn’t necessarily lead to
ruin.

The Big Picture

To my mind, understanding how RAC works when it’s up
and running isn’t the really difficult bit—it’s getting it installed
and running in the first place that’s complicated. There are
many layers that have to be configured correctly before the
installation is complete. No matter what Oracle does to make
things easier, there is an inherent volume of complexity in-
volved in making sure that all the individual pieces are work-
ing correctly and cooperating; and each time you do it or, at
least, each time I do it, there are some new bits to worry
about.

Luckily, I don’t feel compelled to tell you how to install RAC
because there are several blog items (such as the series by Tim
Hall at www.oracle-base.com), massive installation notes on
the Oracle Technet (OTN), and entire books (such as Pro
Oracle Database 11g RAC on Linux by Martin Bach and Steve
Shaw (Apress, 2010)) written to explain it. I’m only going to
give you the highlights of the run-time mechanics that show
you why you need to be careful in using it.

I will, however, give you a picture of what RAC means (see
Figure 8-1).

Figure 8-1. Schematic of a RAC system

The following are key points to pick up from this sche-
matic:

19The NoCOUG Journal

➤	 Each machine (generally referred to as a node) that runs
an instance must be attached to two networks—one is a
public network used to accept connections from end-
user programs, the other is a private network used only
by the instances to talk to each other and maintain a
coherent picture of the combined SGAs. The private
network needs to have the lowest latency that you can
afford to buy.

➤	 All instances must be able to access all the storage.

➤	 There is a special disc that acts as a control mechanism
in the event of a breakdown in communications be-
tween the machines. (If you want to get very sophisti-
cated with RAC—especially if you decide to stretch your
RAC across long distances—you will need a minimum
of three such disks, ideally in three physically separate
locations).

The following are things that cannot be seen in the diagram:

➤	 There are couple of layers of software (the cluster ser-
vices) running at a level between the operating system
and the Oracle instance that make sure that the ma-
chines can communicate with each other.

➤	 There is another network involved that is invisible be-
cause it’s a “virtual network,” driven by Oracle’s cluster
software, sitting on the public network. It’s actually the
virtual network that client programs use to communi-
cate with the Oracle instance. This arrangement makes
it possible for Oracle to inform the client code very
quickly that one of the database server machines has
failed, so that the client can be redirected to a surviving
machine with a minimum time-lag (see sidebar).

➤	 If you are using Oracle Corporation’s preferred installa-
tion approach there will be two instances running on
each machine, the standard “database” instance, identi-
fied by parameter instance_type as being an instance of
type RDBMS, and the “storage management” instance,
identified by parameter instance_type as being an in-
stance of type ASM. (If you want to run instances for
several different databases on the each machine you
would only need one ASM instance per machine—ef-
fectively ASM is functioning rather like a logical volume
manager, as a layer between the Operating System and
the normal database instances.)

Virtual IP Addresses and SCAN

When you configure a RAC system, one of the tasks you
have to do at the operating system level is assign each machine
a “virtual” IP address (VIP). Immediately after startup the
cluster service software inserts this code layer above the real IP
address, and the machines switch to communicating through
the VIPs.

The big difference between real and virtual IP addresses is
that the real IP address is logically bound to a specific piece of
hardware (technically the MAC address on the network card);
whereas the VIP address is controlled by software and its as-
sociation with a particular piece of hardware can be changed
dynamically.

If a database machine were to fail when a client program
was attached to it through the real IP, the client program would
wait a long time (tens to hundreds of seconds) for a response
from the server before deciding that the server machine had
failed. Because Oracle is using virtual IPs, when a machine fails,
one of the other instances will detect the failure very rapidly
and take on the virtual IP of the failed machine to handle cur-
rent requests. This reconfigures the system to stop future con-
nections going to a failed VIP (until the machine and instance
are live again). This means that clients will not experience a
long wait if the instance they are addressing fails.

As another aid to minimize waits caused by network prob-
lems, Oracle 11.2 has introduced the SCAN (Single Client Ac
cess Name) as part of its Grid Infrastructure. Before you can use
SCAN, you have to get your system administrator to set up
some new DNS (Domain Name Service) entries, or assist you
in setting up a subsection of the DNS to use Oracle’s GNS (Grid
Naming Service). Once this has been set up, any client pro-
grams will be able to reference the system by SCAN and you
won’t have to reconfigure any client settings if you need to move
the system to different hardware, or add or remove nodes.

Staying Alive

Looking at Figure 8-1, you might start to wonder what hap-
pens if the network fails and the different instances can’t talk
to each other. If the network breaks, you could end up with
two sets of instances that are convinced that they have exclu-
sive access to the database—with the result that they keep
overwriting each others’ changes.

There are two layers at which this threat could occur: an
Oracle instance may seem to lose contact with the rest of the
instances, or a machine may lose contact with the rest of the
machines. We’ll work from the bottom of the stack upwards
and worry about the machine level first.

The Machine Defenses

The cluster services on each machine can keep in touch
with each other through the network, but they also keep in
touch through the voting disc shown in Figure 8-1, and this
leads to several options for dealing with communication prob-
lems.

Every second, every machine writes to the “voting” disc—
there is a file on the disc holding one block per machine, and
each machine simply increments a counter in its block. In the
simplest case, a machine may discover that it can’t write to the
file—in which case it takes itself out of the cluster and may
reboot itself to protect the cluster. (At this point, of course, the
instance will also terminate abruptly, and one of the other in-
stances will have to go through crash recovery for it.)

As each machine writes its block, however, it also checks the
blocks written by every other machine in the cluster, so it can
detect any cases of a machine that hasn’t updated its own block
in the recent past. (It’s possible that a machine in this state
could have cluster software that is misbehaving but still be
running, and have a live instance on it—and that poses a threat
to the database.) In this case, the discovering machine is al-
lowed to terminate the guilty machine with extreme preju-
dice.

20 May 2012

It’s possible that every machine can write to the file, but
suffer from a network problem that stops some machines from
hearing each other across the network. In this case one ma-
chine will attempt to ring-fence the voting disc and start count-
ing how many other machines it can talk to. If it finds that it
belongs to a networked group that contains more than half the
machines or, if the total number of machines is even, half the
machines including the machine with the lowest known clus-
ter id—it will force the remaining machines out of the cluster
and make them reboot. If it can’t get the necessary quorum
(hence the alternative name of “quorum disk” for the voting
disk), it will take itself out of the cluster.

Inevitably things are more complex than the outline I’ve
given, but you can appreciate that the cluster software has to
be quite clever (and chooses to be very pessimistic) when it
comes to ensuring that a machine doesn’t jeopardize the health
of the database by running with links to the rest of the cluster
that are suspect.

The Oracle Defenses

There is a similar type of strategy at the Oracle level. As
each instance starts up it broadcasts its presence to the other
instances, so every instance always knows how many other
instances should be alive. Similarly, when an instance shuts
down (properly) it says goodbye. There is a brief period during
both startup and shutdown when the latest state of the in-
stance group is passed around and instances “rebalance” them-
selves to cater for the change in number. From this point
onward, every instance is in constant communication over the
network with every other instance (with LMON in particular
acting as the network heartbeat process).

There’s also a file-based heartbeat going on; as we saw in
Chapter 6, the checkpoint process (CKPT) updates the control
file roughly every three seconds. In RAC every instance has its
own CKPT process, so the control file can act as the heartbeat
file for Oracle. If you dump the control file at level 3 (see Ap
pendix) you will see the Checkpoint Progress Records—that’s
the critical section of the control file that contains one record
for each instance that the instance has to keep up to date.

In principle, therefore, it’s possible for an instance to detect
that it can no longer write to the control file, and terminate
itself for the good of the system. It’s also possible, in principle,
for another instance to notice that an instance has hung (and,
as we shall see shortly, if one instance hangs then eventually
every other instance is liable to end up waiting for it to do
something). We might hope, therefore, that Oracle could in-
clude code to allow one instance (if it’s in the quorum, of
course) to take down another instance. Unfortunately, I don’t
think that this can happen until 11.2, where yet another new
process called LMHB (lock manager heart beat monitor) has
been introduced to determine very rapidly that some lock
processes are getting hung up waiting for lock requests to be
serviced.

So we have a way of putting together several pieces of
equipment to create something that behaves like a single, large
system; and we have ways to protect the entire system from the
problems caused by its parts. But it’s complicated, and why
would you want to deal with something complicated?

What’s the Point?

Whenever you look at any technology, or any feature within
a technology, it’s worth asking why you might want to use
it—what’s the benefit? If you can’t describe what you hope to
achieve, then you can’t decide how best to use the technology
and how to measure your degree of success.

There are two arguments put forward for RAC—scalability
and high availability, and the scalability argument comes in
two flavors: throughput and response time. So, before you start
chasing RAC, you need to decide which of these two argu-
ments matters to you, and how best to implement RAC on
your site to ensure that you turn the theory into reality.

High Availability

The theory of high availability says that if one of the nodes
in your RAC system fails, it will only be moments before one
of the other nodes recovers the redo from the failed node, the
nodes rebalance, and everything then keeps on running. The
failover should be virtually transparent to the front-end (al-
though transparency isn’t something that applies to transac-
tions that are in flight unless you recode the application).
There are four obvious questions to ask in response to this
argument, as follows:

➤	 How important is it to restart, say, within 10 seconds?
Can we live with an alternative that might be just a little
slower?

➤	 How often does a machine fail compared to a disk or a
network? (Assuming that we’re not going to cover every
possible single point of failure (SPOF)). How much
benefit do we get from RAC?

➤	 Do we have the human resources to deal with the added
complexity of the RAC software stack and the level of
skill that is still needed to handle patches and up-
grades?

➤	 How many nodes do we need to run before the work-
load for N nodes can run on N-1 nodes without having
a performance impact that would make us uncomfort-
able?

Alternative technologies include things like basic cluster
failover as supplied by the operating system vendor, or a sim-
ple physical standby database if we want to stick to pure Oracle
technology—options where another machine can be available
to take on the role of the database server. The drawbacks are
that the time to failover will be longer and the other machine
is an idle machine, or used for something else but with spare
capacity, or it’s going to give you degraded response time while
it’s acting as the failover machine. It’s quite easy to set up the
database server to fail over fairly quickly—but don’t forget that
every little piece of your application has to find the new ma-
chine as well.

Looking at SPOFs—how many options are you going to
cover? Doubling up network cards is easy, the same goes for
switches, but doubling up the storage and the actual network
cabling is harder—and what’s the strategy for a power outage
in the data centre? You might also look at the complexity of the
whole RAC stack and ask how much time you’re going to lose

(continued on page 26)

21The NoCOUG Journal

S Q L C orner

I
have on good authority from a NoSQL aficionado that “the
only requirement from NoSQL is to be nonrelational, and
therefore without joins.” Obviously if relational joins are
computationally expensive and NoSQL is a viable alter-

native, then NoSQL wins. But are relational joins expensive by
definition?

Suppose that we have the following tables; the example is
from the 1970 paper A Relational Model of Data for Large
Shared Data Banks by the founder of the relational move
ment, Dr. Edgar (Ted) Codd, which was reprinted in the 100th
issue of the NoCOUG Journal.

CREATE TABLE employees (
 employee# INTEGER NOT NULL,
 name VARCHAR2(16),
 birth_date DATE
);

CREATE TABLE job_history (
 employee# INTEGER NOT NULL,
 job_date DATE NOT NULL,
 title VARCHAR2(16)
);

CREATE TABLE salary_history (
 employee# INTEGER NOT NULL,
 job_date DATE NOT NULL,
 salary_date DATE NOT NULL,
 salary NUMBER
);

CREATE TABLE children (
 employee# INTEGER NOT NULL,
 child_name VARCHAR2(16) NOT NULL,
 birth_date DATE
);

Suppose that we have the following data: Employee 1 (Igna
tius) has two children (Iniga and Inigo) and has held two jobs
(Programmer and Database Admin). The salary history for
each job is provided.

INSERT INTO employees
 VALUES (1, 'IGNATIUS', '01-JAN-1970');
INSERT INTO children

 VALUES (1, 'INIGA', '01-JAN-2001');
INSERT INTO children
 VALUES (1, 'INIGO', '01-JAN-2001');

INSERT INTO job_history
 VALUES (1, '01-JAN-1991', 'PROGRAMMER');
INSERT INTO job_history
 VALUES (1, '01-JAN-1992', 'DATABASE ADMIN');

INSERT INTO salary_history
 VALUES (1, '01-JAN-1991', '1-FEB-1991', 1000);
INSERT INTO salary_history
 VALUES (1, '01-JAN-1991', '1-MAR-1991', 1000);
INSERT INTO salary_history
 VALUES (1, '01-JAN-1992', '1-FEB-1992', 2000);
INSERT INTO salary_history
 VALUES (1, '01-JAN-1992', '1-MAR-1992', 2000);

Suppose that we need to create a “shopping cart” with all
the information about employee 1. Here is an XML version of
the shopping cart.

<?xml version="1.0" encoding="US-ASCII"?>
<employee>
 <name>IGNATIUS</name>
 <birth_date>1970-01-01</birth_date>
 <children>
 <child>
 <child_name>INIGA</child_name>
 <birth_date>2001-01-01</birth_date>
 </child>
 <child>
 <child_name>INIGO</child_name>
 <birth_date>2001-01-01</birth_date>
 </child>
 </children>
 <job_history>
 <job>
 <job_date>1991-01-01</job_date>
 <title>PROGRAMMER</title>
 <salary_history>
 <salary>
 <salary_date>1991-02-01</salary_date>
 <salary>1000</salary>
 </salary>
 <salary>
 <salary_date>1991-03-01</salary_date>
 <salary>1000</salary>
 </salary>
 </salary_history>
 </job>
 <job>
 <job_date>1992-01-01</job_date>
 <title>DATABASE ADMIN</title>
 <salary_history>

Don’t Throw Out the
Baby with the Bathwater

by Iggy Fernandez
Iggy Fernandez

22 May 2012

 <salary>
 <salary_date>1992-02-01</salary_date>
 <salary>2000</salary>
 </salary>
 <salary>
 <salary_date>1992-03-01</salary_date>
 <salary>2000</salary>
 </salary>
 </salary_history>
 </job>
 </job_history>
</employee>

The above XML document was produced by the following
query. Tim Hall has an excellent tutorial on SQL/XML func-
tions on his website (http://www.oracle-base.com).

SELECT
 XMLROOT (
 XMLELEMENT ("employee",
 XMLFOREST (
 e.name AS "name",
 e.birth_date AS "birth_date",
 (
 SELECT
 XMLAGG (
 XMLELEMENT ("child",
 XMLFOREST (
 c.child_name AS "child_name",
 c.birth_date AS "birth_date"
)
)
)
 FROM children c
 WHERE c.employee# = e.employee#
) AS "children",
 (
 SELECT
 XMLAGG (
 XMLELEMENT ("job",
 XMLFOREST (
 j.job_date AS "job_date",
 j.title AS "title",
 (
 SELECT
 XMLAGG (
 XMLELEMENT ("salary",
 XMLFOREST (
 s.salary_date AS "salary_date",
 s.salary AS "salary"
)
)
)
 FROM salary_history s
 WHERE s.employee# = j.employee#
 AND s.job_date = j.job_date
) AS "salary_history"
)
)
)
 FROM job_history j
 WHERE j.employee# = e.employee#
) AS "job_history"
)
)
) AS details
FROM employees e
WHERE employee# = 1;

Eight separate physical storage containers are (obviously)
required in the above example—one for each of the four tables
and one for each of the four indexes that are (obviously) nec-
essary for efficient retrieval of a single employee’s information.
Therefore, a minimum of eight data blocks will have to be re-
trieved in order to construct the shopping cart—many more if
the tables contain real volumes of data. If it takes 5 millisec-
onds on average to retrieve a block from disk, the above query
may need a minimum of 40 milliseconds, which may be unac-
ceptable in some demanding scenarios. The natural tempta-
tion therefore is to abandon the relational model as Amazon
did in the case of Dynamo, the NoSQL product that started it
all.

However, the conclusion that eight storage containers are
needed for our example is a misinterpretation of Dr. Codd’s
vision. Dr. Codd did not dictate how data should be stored.

➤	 He did not dictate that each stored table should occupy
one physical file.

➤	 He did not dictate that data should be stored in row-
major order.

➤	 He did not dictate that stored tables should have only
one storage representation each.

➤	 He did not dictate that data should be stored in normal-
ized form only.

➤	 He did not dictate that a single data block should only
contain data from a single table.

➤	 He did not dictate that data cannot be stored in compact
forms (such as shopping carts.)

In other words, shopping carts would be an acceptable stor-
age representation for stored tables. It was not necessary for
Amazon to abandon the relational model when creating
Dynamo. Amazon mistook implementation deficiencies (defi-
ciencies of existing implementations) for intrinsic deficiencies
and threw out the baby with the bathwater.

P.S. Oracle Database has always allowed us to store data
from multiple tables in a form that closely resembles a shop-
ping cart. Each block in a multi-table cluster can store data
from multiple tables. Every single Oracle Database on the
planet contains multi-table clusters, because they are used in-
ternally by Oracle Database to turbocharge the performance
of the data dictionary. On page 379 of Effective Oracle by
Design, Tom Kyte quotes Steve Adams as saying: “If a schema
has no IOTs or clusters, that is a good indication that no thought
has been given to the matter of optimizing data access.” Let me
show how multi-table clusters can be used to reduce the num-
ber of blocks needed to construct a shopping cart to just one
by using a hash cluster; all data for employee 1 will be stored
in a single data block and no indexes will be necessary. First we
create a “hash cluster” using the command “CREATE CLUSTER
employees (employee# INTEGER) hashkeys 1000”. Then we
add the clause “CLUSTER employees (employee#)” to the
table creation statements and insert the data as usual. We can
then confirm that all the data for employee 1 is stored in the
same block.

(continued on page 26)

Oracle Professional
Consulting and
Training Services

Certified training and professional
consulting when you need it,
where you need it.

www.quilogyservices.com
education@aspect.com

866.784.5649

Turn Up the Heat on Oracle Performance

Confio Software, Boulder Colorado.

Database Monitoring and Performance Analysis

Go to www.Confio.com

and try Ignite 8 today!

Only Ignite delivers a complete picture of database

performance from an end user perspective. It analyzes

response time, queries, sessions, and server resources

to show both historical and real-time performance.

24 May 2012

SPONSORSHIP
APPRECIATION

Thank you!
Year 2012

Gold Vendors:
➤	 Amazon Web Services

➤	 Confio Software

➤	 Database Specialists

➤	 Delphix

➤	 GridIron Systems

➤	 Quest Software

➤	 Quilogy Services

 For information about our Gold
Vendor Program, contact the
NoCOUG vendor coordinator via
email at:
vendor_coordinator@nocoug.org.

Chevron

Oracle Corp.

Long-term event sponsorship:

			 Naren Nagtode, Treasurer

Beginning Balance
January 1, 2012		 $ 49,034.64

Revenue

Membership Dues 	 20,345.00
Meeting Fees	 100.00
Vendor Receipts 	 9,200.00
Advertising Fee	 –
Training Day	 –
Conference Sponsorship	 –
Interest	 3.84
Paypal balance	 –
Total Revenue		 $ 29,648.84

Expenses

Regional Meeting	 5,893.25
Journal	 1,510.04
Membership	 698.57
Administration	 418.56
Website	 –
Board Meeting	 391.59
Marketing	 –
Insurance	 –
Vendor expenses	 14.80
Membership S/W subscription	 50.00
Training Day	 –
IOUG-Rep	 –
Miscellaneous	 –

Total Expenses	 $ 8,976.81

Ending Balance
March 31, 2012 		 $ 69,706.67

T R E A S U R E R ’ S   R E P O R T$

Many Thanks to Our Sponsors

N
oCOUG would like to acknowledge and thank our generous sponsors for their contributions.

Without this sponsorship, it would not be possible to present regular events while offering

low-cost memberships. If your company is able to offer sponsorship at any level, please

contact NoCOUG’s president, Iggy Fernandez, at iggy_fernandez@hotmail.com. 

Third International

NoCOUG SQL & NoSQL Challenge
Sponsored by Pythian—Love Your Data™

BE IT KNOWN BY THESE PRESENTS that the Wicked Witch of the West needs your help to
create a magic spell to ensure that the Third Annual Witching & Wizarding Ball is a grand success. A great
tournament has been organized for practitioners of the arts of Es-Cue-El & No-Es-Cue-El to demonstrate their
magic powers.

Mind-Boggling Puzzle
The Wicked Witch of the West has invited six friends to the Third Annual Witching & Wizarding Ball at

Pythian Academy of Es-Cue-El & No-Es-Cue-El. Burdock Muldoon and Carlotta Pinkstone both said they
would come if Albus Dumbledore came. Albus Dumbledore and Daisy Dodderidge both said they would come
if Carlotta Pinkstone came. Albus Dumbledore, Burdock Muldoon, and Carlotta Pinkstone all said they would
come if Elfrida Clagg came. Carlotta Pinkstone and Daisy Dodderidge both said they would come if Falco
Aesalon came. Burdock Muldoon, Elfrida Clagg, and Falco Aesalon all said they would come if Carlotta
Pinkstone and Daisy Dodderidge both came. Daisy Dodderidge said she would come if Albus Dumbledore
and Burdock Muldoon both came.

The Wicked Witch of the West needs an Es-Cue-El or No-Es-Cue-El spell to determine whom she needs to
persuade to attend the wizarding ball in order to ensure that all her invitees attend.

Awesome Prizes
The August Order of the Wooden Pretzel will be conferred on the winner, in keeping with the celebrated

pronouncement of the supreme wizard of Pee-El/Es-Cue-El that “some people can perform seeming miracles
with straight Es-Cue-El, but the statements end up looking like pretzels created by somebody who is ex-
perimenting with hallucinogens.” As if that singular honor were not enough, a fiery wizarding device that
magically displays Oracular tomes will be bestowed upon the champion.

May the best witch or wizard win!

RULES: Pythian will award a Kindle Fire or an Amazon gift card of equal value to the winner. Prizes may
be awarded to runners-up at the discretion of NoCOUG. Submissions should be emailed to SQLchallenge@
nocoug.org. Contestants may use any SQL or NoSQL technology to create the magic spell. The competition
will be judged by Oracle ACE Director Gwen Shapira and the editor of the NoCOUG Journal, Iggy Fernandez.
Judging criteria include correctness, originality, efficiency, portability, and readability. The judges’ decisions
are final. The competition will end at a time determined by the organizers. The judges and organizers reserve
the right to publish and comment on any of the submissions, with due credit to the originators. More infor-
mation about the problem and additional rules can be found at http://www.nocoug.org/.

26 May 2012

on patching and upgrading. Oracle Corp. is constantly work-
ing towards “rolling upgrades”—but it still has a way to go.

Scalability

There are two different concepts that people tend to think
of when thinking about scalability. These are as follows:

➤	 Get the same job done more quickly—improved re-
sponse time

➤	 Get more copies of the same job done at the same
time—improved throughput

It’s quite helpful to think of the first option in terms of in-
dividual big jobs, and the second in terms of a large number of
small jobs. If you have a batch process or report that takes 40
minutes to complete, then sharing it across two instances may
allow it to complete in 20 minutes, sharing it across four nodes
may allow it to complete in 10 minutes. This image probably
carries faint echoes of parallel execution—and the association
is quite good; if you hope to get a shorter completion time
without rewriting the job you’re probably going to have to take
advantage of the extra nodes through parallel execution. If
parallel execution comes to your aid, the threat is the extra cost
of messaging. There are overheads in passing messages be-
tween layers of parallel execution slaves, and the overheads are
even greater if the slaves are running in different instances. If
you want to make big jobs faster (and can’t improve the code),
maybe all you need is more memory, or more CPUs or faster
CPUs before you move to greater complexity.

If your aim is to allow more jobs to run in the same time—
let’s say you’re growing a business and simply have more em-
ployees doing the same sort of thing on the system—then
adding more instances allows more employees to work concur-
rently. If you can run 50 employees at a time on one instance,
then maybe you can run 100 at a time on two, and 200 at a time
on four. You simply add instances as you add employees.

In favor of this strategy is the fact that each instance has its
own log writer (lgwr) and set of redo log files—and the rate at
which an instance can handle redo generation is the ultimate
bottleneck in an Oracle system. On the downside, if you have
more processes (spread across more instances) doing the same
sort of work, you are more likely to have hot spots in the data.
In RAC, a hot spot means more traffic moving between in-
stances—and that’s the specific performance problem you al-
ways have to be aware of.

Again you might ask why you don’t simply increase the size of
a single machine as your number of users grows. In this case,
there’s an obvious response: it’s not that easy to “grow” a machine,
especially when compared to buying another “commodity” ma-
chine and hanging it off the network. Indeed, one of the market-
ing points for RAC was that it’s easier to plan for growth—you
don’t have to buy a big machine on day one and have it running
at very low capacity (but high cost) for a couple of years. You can
start cheap and grow the cluster with the user base.

Note: One of the unfortunate side effects of the “start big” strategy
that I’ve seen a couple of times is that a big machine with a small
user base can have so much spare capacity that it hides the worst
performance issues for a long time—until the user base grows large
enough to make fixing the performance issues an emergency. s

(continued from page 20)(continued from page 22)

SQL> SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_
NUMBER(rowid)
 2 FROM employees where employee# = 1;
 27745

SQL> SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_
NUMBER(rowid)
 2 FROM children where employee# = 1;
 27745

SQL> SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_
NUMBER(rowid)
 2 FROM job_history where employee# = 1;
 27745

SQL> SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_
NUMBER(rowid)
 2 FROM salary_history where employee# = 1;
 27745

Therefore, no matter how many queries are needed or how
complex they are, only one block of data needs to be retrieved
into memory in order to answer any and all questions about
employee 1. Because we are using hash clusters, no indexes are
necessary if we are retrieving information about only one em-
ployee. However we are not prevented from creating indexes as
usual, so it would still be possible to answer questions effi-
ciently that involve more than one employee, such as: “Find all
employees who have held the post of database administrator.”
In other words, we get to eat our cake and have it too.

P.S. When I interviewed Baron Schwartz, chief perfor-
mance architect of Percona, for the 101st issue of the NoCOUG
Journal, I asked him, “What do you think of the NoSQL move-
ment? Is it a threat to MySQL?” Here was his reply:

I think we have all learned a lot from it in the last few years,
but I think that some of the strongest proponents have actually
misunderstood what the real problems are. There was a lot of
discussion that went something like “SQL is not scalable,” when
in fact that’s not true at all. Current implementations of SQL
databases indeed have some scalability limitations. That is an
implementation problem, not a problem with the model. The
baby got thrown out with the bathwater. I believe that some of
the emerging products, such as Clustrix, are going to open a lot
of people’s eyes to what is possible with relational technology.
That said, many of the approaches taken by nonrelational data-
bases are worth careful consideration, too. In the end, though, I
don’t think that we need 50 or 100 alternative ways to access a
database. We might need more than one, but I would like some of
the non-SQL databases to standardize a bit. s

• Cost-effective and flexible extension of your

IT team

• Proactive database maintenance and quick

resolution of problems by Oracle experts

• Increased database uptime

• Improved database performance

• Constant database monitoring with

Database Rx

• Onsite and offsite flexibility

• Reliable support from a stable team of DBAs

familiar with your databases

Keeping your Oracle database systems highly available takes knowledge, skill, and experience. It also takes knowing that

each environment is different. From large companies that need additional DBA support and specialized expertise to small

companies that don’t require a full-time onsite DBA, flexibility is the key. That’s why Database Specialists offers a flexible

service called DBA Pro. With DBA Pro, we work with you to configure a program that best suits your needs and helps you

deal with any Oracle issues that arise. You receive cost-effective basic services for development systems and more com-

prehensive plans for production and mission-critical Oracle systems.

DBA Pro’s mix and match service components

Access to experienced senior Oracle expertise when you need it

We work as an extension of your team to set up and manage your Oracle databases to maintain reliability, scalability,

and peak performance. When you become a DBA Pro client, you are assigned a primary and secondary Database

Specialists DBA. They’ll become intimately familiar with your systems. When you need us, just call our toll-free number

or send email for assistance from an experienced DBA during regular business hours. If you need a fuller range of

coverage with guaranteed response times, you may choose our 24 x 7 option.

24 x 7 availability with guaranteed response time

For managing mission-critical systems, no service is more valuable than being able to call on a team of experts to solve

a database problem quickly and efficiently. You may call in an emergency request for help at any time, knowing your call

will be answered by a Database Specialists DBA within a guaranteed response time.

Daily review and recommendations for database care

A Database Specialists DBA will perform a daily review of activity and alerts on your Oracle database. This aids in a proac-

tive approach to managing your database systems. After each review, you receive personalized recommendations, com-

ments, and action items via email. This information is stored in the Database Rx Performance Portal for future reference.

Monthly review and report

Looking at trends and focusing on performance, availability, and stability are critical over time. Each month, a Database

Specialists DBA will review activity and alerts on your Oracle database and prepare a comprehensive report for you.

Proactive maintenance

When you want Database Specialists to handle ongoing proactive maintenance, we can automatically access your data-

base remotely and address issues directly — if the maintenance procedure is one you have pre-authorized us to perform.

You can rest assured knowing your Oracle systems are in good hands.

Onsite and offsite flexibility

You may choose to have Database Specialists consultants work onsite so they can work closely with your own DBA staff,

or you may bring us onsite only for specific projects. Or you may choose to save money on travel time and infrastructure

setup by having work done remotely. With DBA Pro we provide the most appropriate service program for you.

CUSTOMIZABLE SERVICE PLANS FOR ORACLE SYSTEMSD B A P R O B E N E F I T S

C A L L 1 - 8 8 8 - 6 4 8 - 0 5 0 0 T O D I S C U S S A S E R V I C E P L A N

Database Specialists: DBA Pro Service

© 2001, Database Specialists, Inc.
Database Rx is a trademark of Database Specialists,
Oracle is a registered trademark of Oracle Corporation.
All rights reserved.

O R A C L E A P P L I C A T I O N S | B A C K U P A N D R E C O V E R Y S T R A T E G I E S | M I G R A T I O N S A N D U P G R A D E S | D A T A B A S E M O N I T O R I N G

S Y S T E M A R C H I T E C T U R E | D A T A B A S E D E S I G N | P R O D U C T I O N S U P P O R T | P E R F O R M A N C E T U N I N G | D A T A B A S E D E V E L O P M E N T

Database Specialists, Inc.

388 Market Street, Suite 400, San Francisco, CA 94111

Tel: 415-344-0500 | Fax: 415-344-0509 | Toll-Free: 888-648-0500

www.dbspecialists.com

NoCOUG
P.O. Box 3282
Danville, CA 94526

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

RSVP required at http://www.nocoug.org

8:00 a.m.–9:00	 Registration and Continental Breakfast—Refreshments served

9:00–9:30	 Welcome: Iggy Fernandez, NoCOUG president

9:30–10:30	 Keynote: Oracle Database Appliance Unplugged!—Sohan DeMel, Oracle Corporation

10:30–11:00	 Break

11:00–12:00	 Parallel Sessions #1

	 Auditorium: Acquiring Big Data—Dave Rubin, Oracle Corporation

	 Tassajara: Measuring and Forecasting Scalability and Performance from Network Traffic
—Baron Schwartz, Percona

	 Diablo: Running Oracle in the Public Cloud—Shakil Langha, Amazon Web Services

12:00–1:00 p.m.	 Lunch

1:00–2:00	 Parallel Sessions #2

	 Auditorium: Modern Platform Topics for Modern Oracle Database Professionals—Part I
—Kevin Closson, EMC

	 Tassajara: AWR/ASH—Understanding an Application’s Database Usage—Jerry Brenner, Guidewire

	 Diablo: Introducing Oracle Exalytics In-Memory Machine—Manan Goel, Oracle Corporation

2:00–2:30	 Break and Refreshments

2:30–3:30	 Parallel Sessions #3

	 Auditorium: Modern Platform Topics for Modern Oracle Database Professionals—Part II
—Kevin Closson, EMC

	 Tassajara: A Look at MySQL for Oracle DBAs—Abhaid Gaffoor

	 Diablo: Information Discovery—Introducing Oracle Endeca—Manan Goel, Oracle Corporation

3:30–4:00	 Raffle

4:00–5:00	 Parallel Sessions #4

	 Auditorium: Introduction to Dtrace—Kyle Hailey, Delphix

	 Tassajara: Big Data Analysis Using Oracle R Enterprise—Vaishnavi Sashikanth, Oracle Corporation

	 Diablo: To Be Announced

5:00–	 NoCOUG Networking and No-Host Happy Hour

NoCOUG Spring Conference Schedule
Thursday, May 31, 2012—CarrAmerica Conference Center, Pleasanton, CA

Please visit http://www.nocoug.org for updates and directions, and to submit your RSVP.
Cost: $50 admission fee for non-members. Members free. Includes lunch voucher.

Th
e

N
oC

O
UG

 Jo
ur

na
l d

es
ig

n
an

d
pr

od
uc

tio
n:

 G
ira

ffe
x,

 In
c.

, S
.F.

Fr
on

t c
ov

er
 p

ho
to

: P
ic

kw
ic

k
Cr

oc
us

es
 E

m
er

gi
ng

 F
ro

m
 U

nd
er

 S
no

w
 b

y
Se

rg
e

Ve
ro

/P
ho

to
s.c

om

	NoCOUG_201205_CVR-fyi
	NoCOUG_201205-fyi

