
Approximately Detecting Duplicates for Streaming Data
using Stable Bloom Filters

Fan Deng
University of Alberta

fandeng@cs.ualberta.ca

Davood Rafiei
University of Alberta

drafiei@cs.ualberta.ca

ABSTRACT
Traditional duplicate elimination techniques are not appli-
cable to many data stream applications. In general, pre-
cisely eliminating duplicates in an unbounded data stream
is not feasible in many streaming scenarios. Therefore, we
target at approximately eliminating duplicates in streaming
environments given a limited space. Based on a well-known
bitmap sketch, we introduce a data structure, Stable Bloom
Filter, and a novel and simple algorithm. The basic idea is
as follows: since there is no way to store the whole history
of the stream, SBF continuously evicts the stale information
so that SBF has room for those more recent elements. After
finding some properties of SBF analytically, we show that a
tight upper bound of false positive rates is guaranteed. In
our empirical study, we compare SBF to alternative meth-
ods. The results show that our method is superior in terms
of both accuracy and time efficiency when a fixed small space
and an acceptable false positive rate are given.

1. INTRODUCTION
Eliminating duplicates is an important operation in tradi-
tional query processing, and many algorithms have been de-
veloped [20]. A common characteristic of these algorithms is
the underlying assumption that the whole data set is stored
and can be accessed if needed. Thus, multiple passes over
data are possible, which is the case in a traditional database
scenario. However, this assumption does not hold in a new
class of applications, often referred to as data stream sys-
tems [3], which are becoming increasingly important. Con-
sequently, detecting duplicates precisely is not always possi-
ble. Instead, it may suffice to identify duplicates with some
errors.

While it is useful to have duplicate elimination in a Data
Stream Management System (DSMS)[3], some new proper-
ties of these systems make the duplicate detection problem
more challenging and to some degree different from the one
in a traditional DBMS. First, the timely response property
of data stream applications requires the system to respond

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

in real-time. There is no choice but to store the data in
limited main memory rather than in huge secondary stor-
age. Sometimes even main memory is not fast enough. For
example, for network traffic measurement and accounting,
ordinary memory (DRAM) is too slow to process each IP
packet in time, and fast memory (on-chip SRAM) is small
and expensive [17, 5].

Second, the potentially unbounded property of data streams
indicates that it is not possible to store the whole stream in
a limited space. As a result, exact duplicate detection is
infeasible in such data stream applications.

On the other hand, there are cases where efficiency is more
important than accuracy, and therefore a quick answer with
an allowable error rate is better than a precise one that is
slow. Sometimes there is no way to have a precise answer
at all. Therefore, load shedding is an important topic in
data stream system research [28, 4]. Next, we provide some
motivating examples.

1.1 Motivating Examples
URL Crawling. Search engines regularly crawl the Web
to enlarge their collections of Web pages. Given the URL
of a page, which is often extracted from the content of a
crawled page, a search engine must probe its archive to find
out if the URL is in the engine collection and if the fetching
of the URL can be avoided [8, 21].

One way to solve the problem is to store all crawled URLs
in main memory and search for a newly encountered URL
in it. However, the set of URLs can be too large to fit in
memory. Partially storing URLs in the secondary storage is
also not viable because of the large volume of searches that
is expected to be performed within limited time.

In practice, detecting duplicates precisely may not be in-
dispensable. The consequence of an imprecise duplicate de-
tection is that some already-crawled pages will be crawled
again, or some new URLs which should be crawled are missed.
The first kind of errors may lead the crawler to do some re-
dundant crawling. This may not have a great influence on
performance as long as the error rate is acceptable. For the
second kind of errors, since a search engine can archive only
a small portion of the entire web, a small miss rate is usu-
ally acceptable. In addition, if a missed URL refers to a high
quality page, it is quite likely that the URL will be listed
in the content of more than one crawled page, and there is

less chance of repeatedly missing it. The solution adopted
by the Internet Archive crawler introduces the second kind
of errors [21].

Selecting distinct IP addresses. In network monitor-
ing and accounting, it is often important to understand the
traffic and to identify the users on the network [22]. The
following two queries, for example, may be interesting to
network monitors: who are the users on the network within
the past hour? Where do they go? The queries may be
written as:

Select distinct Source/Destination IP
from IP PacketsStream
Within Past 1 Hour

The result could be helpful for further analyzing the user
profiles, interests and the network traffic. Because of the
current high throughput of Internet routers and limited amount
of fast memory, it is hard to capture per package informa-
tion precisely. Often, sampling or buffering is used as a
compromise, which is discussed in this paper.

Duplicate detection in click streams. Recently, Met-
wally et al. propose another application for approximate du-
plicate detection in a streaming environment [24]. In a Web
advertising scenario, advertisers pay web site publishers for
clicks on their advertisements. For the sake of profit, it is
possible that a publisher fakes some clicks (using scripts),
hence a third party, the advertising commissioner, has to de-
tect those false clicks by monitoring duplicate user IDs. We
discuss more about their work in the related work section.

1.2 Our Contributions
In this paper, we propose Stable Bloom Filter(SBF), which
extends and generalizes the regular Bloom filter, and ac-
cordingly, a novel algorithm which dynamically updates the
sketch to represent recent data. We find and prove the stable
properties of an SBF including stability, exponential conver-
gence rate and monotonicity, based on which we show that
using constant space, the chance of a false positive can be
bounded to a constant independent of the stream size, and
this constant is explicitly derived. Furthermore, we show
that the processing time of SBF for each element in the
stream is also constant independent of the stream size. To
make our algorithm readily applicable in practice, we pro-
vide detailed discussions of the parameter setting issues both
in theory and in experiments. And we compare our method
to alternative methods using both real and synthetic data.
The results show that our method is superior in terms of
both accuracy and time efficiency when a fixed small space
and an acceptable false positive rate are given.

1.3 Roadmap
In Section 2, we present the problem statement and some
background on existing approaches. Our solution is pre-
sented and discussed in Section 3. In Section 4, we discuss
how our algorithm can be used in practice. In Section 5, we
verify our theoretical findings, experimentally evaluate our
method and report the results of comparisons with alterna-
tive methods. Related work is reviewed in Section 6, and
conclusions are given in Section 7.

2. PRELIMINARIES
This section presents the problem statement in a data stream
model and some possible solutions.

2.1 Problem Statement
We consider a data stream as a sequence of numbers, de-
noted by SN = x1, . . . , xi, . . . , xN , where N is the size of
the stream. The value of N can be infinite, which means
that the stream is not bounded. In general, a stream can be
a sequence of records, but it is not hard to transform each
record to a number (e.g., using hashing or fingerprinting)
and use this stream model.

Our problem can be stated as follows: given a data stream
SN and a certain amount of space, M , estimate whether
each element xi in SN appears in x1, . . . , xi−1 or not. Since
our assumption is that M is not large enough to store all
distinct elements in x1, . . . , xi−1, there is no way to solve the
problem precisely. Our goal is to approximate the answer
and minimize the number of errors, including both false pos-
itives and false negatives , where a false positive is a distinct
element wrongly reported as duplicate, and a false negative
is a duplicate element wrongly reported as distinct.

To address this problem, we examine two techniques that
have been previously used in different contexts.

2.2 The Buffering Method
A straightforward solution is to allocate a buffer and fill the
buffer with enough elements of the stream. For each new
element, the buffer can be checked, and the element may
be identified as distinct if it is not found in the buffer, and
duplicate otherwise. When the buffer is full, a newly arrived
element may evict another element out of the buffer before it
is stored. There are many replacement policies for choosing
an element to be dropped out (e.g. [20]). Clearly, buffering
introduces no false positives. We will use this method in
our experiments and compare its performance to that of our
method.

2.3 Bloom Filters
Bloom [7] proposes a synopsis structure, known as the Bloom
filter, to approximately answer membership queries. A Bloom
filter, BF , is a bit array of size m, all of which are initially set
to 0. For each element, K bits in BF are set to 1 by a set of
hash functions {h1(x), . . . , hK(x)}, all of which are assumed
to be uniformly independent. It is possible that one bit in
BF is set multiple times, while only the first setting opera-
tion changes 0 into 1, and the rest have no effect on that bit.
To know whether a newly arrived element xi has been seen
before, we can check the bits {h1(xi), . . . , hK(xi)}. If any
one of these bits is zero, with 100% confidence we know xi is
a distinct element. Otherwise, it is regarded as a duplicate
with a certain probability of error. An error may occur be-
cause it is likely that the cells {h1(xi), . . . , hK(xi)} are set
before by elements other than xi.

The probability of a false positive (false positive rate) FP =
(1 − p)K , where p = (1 − 1/m)Kn is the probability that a
particular cell is still zero after seeing n distinct elements.
It is shown that when the number of hash functions K =
ln(2)(m/n), this probability will be minimized to (1/2)ln(2)(m/n),

where m is the number of bits in BF and n is the number
of distinct elements seen so far [25].

3. STABLE BLOOM FILTERS
The Bloom filter is shown to be useful for representing the
presence of a set of elements and answering membership
queries, provided that a proper amount of space is allocated
according to the number of distinct elements in the set.

3.1 The Challenge to Bloom Filters
However, in many data stream applications, the allocated
space is rather small compared to the size of the stream.
When more and more elements arrive, the fraction of zeros
in the Bloom filter will decrease continuously, and the false
positive rate will increase accordingly, finally reaching the
limit, 1, where every distinct element will be reported as a
duplicate, indicating that the Bloom filter is useless.

Our general solution is to avoid the state where the Bloom
filter is full by evicting some information from it before the
error rate reaches a predefined threshold. This is similar to
the replacement operation in the buffering method, in which
there are several possible policies for choosing a past element
to drop. In many real world data stream applications, often
the recent data is more important than the older data [13,
26]. However, for the regular Bloom filter, there is no way
to distinguish the recent elements from the past ones, since
no time information is kept. Accordingly, we add a random
deletion operation into the Bloom filter so that it does not
exceed its capacity in a data stream scenario.

3.2 Our Approach
To solve this problem, we introduce the Stable Bloom Filter,
an extension of the regular Bloom filter.

Definition 1 (Stable Bloom Filter (SBF)). An SBF
is defined as an array of integer SBF [1], . . . , SBF [m] whose
minimum value is 0 and maximum value is Max. The up-
date process follows Algorithm 1. Each element of the array
is allocated d bits; the relation between Max and d is then
Max = 2d − 1. Compared to bits in a regular Bloom filter,
each element of the SBF is called a cell.

Concretely speaking, we change bits in the regular Bloom
filter into cells, each consisting of one or more bits. The
initial value of the cells is still zero. Each newly arrived
element in the stream is mapped to K cells by some uniform
and independent hash functions. As in a regular Bloom
filter, we can check if a new element is duplicate or not by
probing whether all the cells the element is hashed to are
non-zero. This is the duplicate detection process.

After that, we need to update the SBF. We first randomly
decrement P cells by 1 so as to make room for fresh elements;
we then set the same K cells as in the detection process to
Max. Our symbol list is shown in Table 1, and the detailed
algorithm is described in Algorithm 1.

3.3 The Stable Property
Based on the algorithm, we find an important property of
SBF both in theory and in experiments: after a number of

Algorithm 1: Approximately Detect Duplicates using SBF

Data: A sequence of numbers S = x1, . . . , xi, . . . , xN .
Result: A sequence of “Yes/No” corresponding to each

input number.
begin

initialize SBF[1]. . . SBF[m] = 0
for each xi ∈ S do

Probe K cells SBF [h1(xi)] . . . SBF [hK(xi)]
if none of the above K cells is 0 then

DuplicateFlag = “Yes”
else

DuplicateFlag = “No”

Select P different cells uniformly at random
SBF [j1] . . . SBF [jP], P ∈ {1, . . . , m}
for each cell SBF [j] ∈ {SBF [j1], . . . , SBF [jP]} do

if SBF [j] ≥ 1 then
SBF [j] = SBF [j] − 1

for each cell ∈ {SBF [h1(xi)], . . . , SBF [hK(xi)} do
SBF [h(xi)] = Max

Output DuplicateFlag

end

Table 1: The Symbol List
Symbols Meanings

N Number of elements in the input stream
M Total space available in bits
m Number of cells in the SBF

Max The value a cell is set to
d Number of bits allocated per cell
K Number of hash functions
k The probability that a cell is set

in each iteration
P Number of cells we pick to decrement by 1

in each iteration
p The probability that a cell is picked

to be decremented by 1 in each iteration
hi The ith hash function

iterations, the fraction of zeros in the SBF will become fixed
no matter what parameters we set at the beginning.

We call this the stable property of SBF and deem it im-
portant to our problem because the false positive rate is
dependent on the fraction of zeros in SBF.

Theorem 1. Given an SBF with m cells, if in each it-
eration, a cell is decremented by 1 with a probability p and
set to Max with a probability k, the probability that the cells
becomes zero after N iterations is a constant , provided that
N is large enough, i.e.

lim
N→∞

Pr(SBFN = 0)

exists, where SBFN is the value of the cell at the end of
iteration N .

In our formal discussion, we assume that the underlying
distribution of the input data does not change over time.

Our experiments on the real world data show that this is
not a very strong assumption, and the experimental results
verify our theory.

Proof. Within each iteration, there are three operations:
detecting duplicates, decreasing cell values and setting cells
to Max. Since the first operation does not change the values
of the cells, we just focus on the other two operations.

Within the process of iterations from 1 to N , the cell could
be set 0, ..., (N − 1) or even N times. Since the newest set-
ting operation clears the impact of any previous operations,
we can just focus on the process after the newest setting
operation.

Let Al denote the event that within the N iterations the
most recent setting operation applied to the cell occurs at
iteration N−l, which means that no setting happened within
the most recent l iterations (i.e. from iteration N − l + 1
to iteration N , l < N), and let ĀN denotes the event that
the cell has never been set within the whole N iterations.
Hence, the probability that the cell is zero after N iterations
is as follows:

Pr(SBFN = 0) =

N−1∑

l=Max

[Pr(SBFN = 0 | Al)Pr(Al)]

+ Pr(SBFN = 0 | ĀN)Pr(ĀN),

(1)

where

Pr(SBFN = 0 | Al) =
l∑

j=Max

(
l

j

)
pj (1 − p)l−j (2)

Pr(Al) = (1 − k)lk (3)

Pr(SBFN = 0 | ĀN) = 1 (4)

Pr(ĀN) = (1 − k)N . (5)

We have Eq. 2 because during those l iterations, there is no
setting operation, and the cell becomes zero if and only if it is
decremented by 1 no less than Max times. Clearly when l <
Max, the cell is impossible to be decreased to 0, and l = N
means ĀN happens, so we just consider the cases of Max ≤
l ≤ (N − 1) in Eq. 2. When ĀN happens, the cell is 0 with
a probability 1 because the initial value of the cell is 0 and
it has never been set, therefore we have Eq. 4. Having the
above equations, we can prove that limN→∞ Pr(SBFN = 0)
exists. Due to the page limit, we put the detailed proof in
an extended version of this paper.

Having Theorem 1, now we can prove our stable property
statement.

Corollary 1 (Stable Property). The expected frac-
tion of zeros in an SBF after N iterations is a constant,
provided that N is large enough.

Proof. In each iteration, each cell of the SBF has a cer-
tain probability of being set to Max by the element hashed

to that cell. Since the underlying distribution of the in-
put data does not change, the probability that a particular
element appears in each iteration is fixed. Therefore, the
probability of each cell being set is fixed.

Meanwhile, the probability that an arbitrary cell is decre-
mented by 1 is also a constant. According to Theorem 1,
the probabilities of all cells in the SBF becoming 0 after N
iterations are constants, provided that N is large enough.
Therefore, the expected fraction of 0 in an SBF after N it-
erations is a constant, provided that N is large enough.

Now we know an SBF converges. In fact this convergence is
like the process that a buffer is filled by items continually.
SBF is stable means that its maximum capacity is reached,
similar to the case that a buffer is full of items. Another
important property is the convergence rate.

Corollary 2 (Convergence Rate). The expected frac-
tion of 0s in the SBF converges at an exponential rate.

Proof. From Eq. 1, 4 and 5, we can derive

Pr(SBFN = 0) − Pr(SBFN−1 = 0)

=Pr(SBFN = 0 | AN−1)Pr(AN−1)

+ Pr(ĀN) − Pr(ĀN−1)

=k(1 − k)N−1(Pr(SBFN = 0 | AN−1) − 1)

(6)

Clearly, Eq. 6 exponentially converges to 0. i.e. Pr(SBFN [c]=
0) converges at an exponential rate, and this is true for all
cells in the SBF. Therefore, the expected fraction of 0s in
the SBF converges at an exponential rate.

Lemma 1 (Monotonicity). The expected fraction of
0s in an SBF is monotonically non-increasing.

Proof. Since the value of Eq. 6 is always no greater
than 0, the probability that a cell becomes zero is always
decreasing or remains the same. Similar to the proof of
Corollary 2, we can draw the conclusion.

This lemma will be used to prove our general upper bound of
the false positive rate where the number of iterations needs
not to be infinity.

3.4 The Stable Point
Currently we know the fraction of 0s in an SBF will be a
constant at some point, but we do not know the value of
this constant. We call this constant the stable point.

Definition 2 (Stable Point). The stable point is de-
fined as the limit of the expected fraction of 0s in an SBF
when the number of iterations goes to infinity. When this
limit is reached, we call SBF stable.

From Eq. 1, we are unable to obtain the limit directly. How-
ever, we can derive it indirectly.

Theorem 2. Given an SBF with m cells, if a cell is decre-
mented by 1 with a constant probability p and set to Max
with a constant probability k in each iteration, and if the
probability that the cell becomes 0 at the end of iteration N
is denoted by Pr(SBFN = 0),

lim
N→∞

Pr(SBFN = 0) = (
1

1 + 1
p(1/k−1)

)Max (7)

Proof. The basic idea is to make use of the fact that
SBF is stable, the expected fraction of 0,1,...,Max in SBF
should be all constant. See the full paper for the details.

The theorem can be verified by replacing the parameters in
Eq. 1 with some testing values.

From Theorem 2 we know the probability that a cell becomes
0 when SBF is stable. If all cells have the same probability
of being set, we can obtain the stable point easily. However,
that requires the data stream to be uniformly distributed.
Without this uniform distribution assumption, we have the
following statement.

Theorem 3 (SBF Stable Point). When an SBF is
stable, the expected fraction of 0s in the SBF is no less than

(
1

1 + 1
P (1/K−1/m)

)Max,

where K is the number of cells being set to Max and P is
the number of cells decremented by 1 within each iteration.

Proof. The basic idea is to prove the case of m = 2
first, and generalize it to m ≥ 2. See the full paper for the
details.

3.5 False Positive Rates
In our method, there could be two kinds of errors: false posi-
tives (FP) and false negatives (FN). A false positive happens
when a distinct element is wrongly reported as duplicate; a
false negative happens when a duplicate element is wrongly
reported as distinct. We call their probabilities false positive
rates and false negative rates.

Corollary 3 (FP Bound when Stable). When an SBF
is stable, the FP rate is a constant no greater than FPS,

FPS = (1 − (
1

1 + 1
P (1/K−1/m)

)Max)K . (8)

Proof. If Prj(0) denotes the probability that the cell
SBF [j] = 0 when the SBF is stable, the FP rate is

(
1

m
(1 − Pr1(0)) + · · · +

1

m
(1 − Prm(0))K

= (1 −
1

m
(Pr1(0) + · · · + Prm(0)))K

Please note that 1
m

(Pr1(0) + · · · + Prm(0)) is the expected
fraction of 0s in the SBF. According to Theorems 1 and 3,
the FP rate is a constant and Eq. 8 is an upper bound of
the FP rate.

This upper bound can be reached when the stream elements
are uniformly distributed.

Corollary 4 (The case of reaching the FP Bound).
Given an SBF with m cells, if the stream elements are uni-
formly distributed when the SBF is stable, the FP rate is
FPS (Eq. 8).

Proof. Because elements in the input data stream are
uniformly distributed, each cell in the SBF will have the
same probability to be set to Max. According to Theorem 1
and the proof of Theorem 3 we can derive this statement.

Corollary 5 (General FP Bound). Given an SBF
with m cells, FPS (Eq. 8) is an upper bound for FP rates at
all time points, i.e. before and after the SBF becomes stable.

Proof. This can be easily derived from Lemma 1 and
Corollary 3.

Therefore, the upper bound for FP rates is valid no matter
the SBF is stable or not.

From Eq. 8 we can see that m has little impact on FPS,
since 1/m is negligible compared to 1/K (m � K). This
means the amount of space has little impact on the FP
bound once the other parameters are fixed. The value of
P has a direct impact on FPS: the larger the value of P ,
the smaller the value of FPS. This can be seen intuitively:
the faster the cells are cleared, the more 0s the SBF has,
thus the smaller the value of FPS is. Oppositely, increasing
the value of Max results in the increase of FPS. In contrast
to P and Max, from the formula we can see the impact of
the value of K on FPS is twofold: intuitively, using more
hash functions increases the distinguishing power for dupli-
cates (decreases FPS), but “fills” the SBF faster (increases
FPS).

3.6 False Negative Rates
A false negative(FN) is an error when a duplicate element is
wrongly reported as distinct. It is generated only by dupli-
cate elements, and is related to the input data distribution,
especially the distribution of gaps. A gap is the number of
elements between a duplicate and its nearest predecessor.

Suppose a duplicate element xi whose nearest predecessor is
xi−δi(xi = xi−δi) is hashed to K cells, SBF [Ci1] . . . SBF [CiK].
An FN happens if any of those K cells is decremented to 0
during the δi iterations when xi arrives. Let PR0(δi, kij) be
the probability that cell Cij (j = 1. . . K) is decremented to
0 within the δi iterations. This probability can be computed
as in Eq. 1:

PR0(δi, kij) =

δi−1∑

l=Max

[Pr(SBFδi = 0 | Al)Pr(Al)]

+ Pr(SBFδi = 0 | Āδi)Pr(Āδi),

(9)

where

Pr(SBFδi = 0 | Al) =
l∑

j=Max

(
l

j

)
pj (1 − p)l−j , (10)

Pr(Al) = (1 − kij)
lkij , (11)

Pr(SBFδi = 0 | Āδi) =

δi∑

j=Max

(
δi

j

)
pj (1 − p)δi−j , (12)

Pr(Āδi) = (1 − kij)
δi , (13)

and kij is the probability that cell Cij is set to Max in each
iteration. The meanings of the other symbols are the same
as those in the proof of Theorem 1. Also, most of above
equations are similar, except that Eq. 12 is different from
Eq. 4. This is because the initial value of the cell in the
case of Theorem 1 is 0, but it is Max here.

Furthermore, The probability that an FN occurs when xi

arrives can be expressed as follows:

Pr(FNi) = 1 −
K∏

j=1

(1 − PR0(δi, kij)). (14)

When δi < Max, PR0(δi, kij) is 0, which means the FN
rate is 0. Besides, for distinct elements who have no pre-
decessors, the FN rates are 0. The value of δi depends on
the input data stream. In the next section, we discuss how
to adjust the parameters to minimize the FN rate under the
condition that the FP rate is bounded within a user-specified
threshold.

4. FROM THEORY TO PRACTICE
In the previous section we propose the SBF method and ana-
lytically study some of its properties: stability, convergence
rate, monotonicity, stable point, FP rates (upper bound)
and FN rates. In this section, we discuss how SBF can be
used in practice and how our analytical results can be ap-
plied.

4.1 Parameters Setting
Since FP rates can be bounded regardless of the input data
but FN rates cannot, given a fix amount of space, we can
choose a combination of Max, K and P that minimizes the
number of FNs under the condition that the FP rate is
within a user-specified threshold. Meanwhile we take into
account the time spent on each element, which is crucial in
many data stream applications.

Overview of parameters setting. We have 3 parameters
to set in our algorithm: Max, K and P . They are related to
other parameters: FP rates, FN rates, SBF size m. Among
these parameters, we assume that users specify m and the
allowable FP rate. Based on the analysis in the previous
section, we can obtain a formula computing the value of P
from other parameters provided that Max and K have been
chosen already. To set Max and K properly, we first derive
the relationship between FN rates (the expected number of
FNs), other parameters and the input data distribution. We
find that the optimal value of K which minimizes the FN
rates is independent of the input data. Thus, K can be set
by trying different possible values on the formula we derive
without considering the input data distribution, assuming
Max is known. Last, we show that Max can be set empiri-
cally.

The expected number of FNs. Since our goal is to mini-
mize the number of FNs, we can compute the expected num-
ber of FNs, E(#FN), as the sum of FN rates for each du-

plicate element in the stream: E(#FN) =
∑Ñ

i=1 Pr(FNi),

where Ñ is the number of duplicates in the stream. Com-
bining it with Eq. 14 we have

E(#FN) =
Ñ∑

i=1

[1 −
K∏

j=1

(1 − PR0(δi, kij))], (15)

where δi is the number of elements between xi and its pre-
decessor, and kij is the probability that cell Cij is set to
Max in each iteration. Cij is the cell element xi is hashed
to by the jth hash function. Since the function PR0(δ, k) is
continuous, for each xi there must be a k̄i such that

(1 − PR0(δi, k̄i))
K =

K∏

j=1

(1 − PR0(δi, kij)).

For the same reason, there must be an “average” δ̂ and an

“average” k̂ such that

Ñ [1−(1−PR0(δ̂, k̂))K] =
Ñ∑

i=1

[1−(1−PR0(δi, k̄i))
K] = E(#FN).

Let f(δ̂, k̂) be the average FN rate, i.e.

f(δ̂, k̂) = 1 − (1 − PR0(δ̂, k̂))K . (16)

Our task then becomes setting the parameters to minimize

this average FN rate, f(δ̂, k̂), while bounding the FP rate
within an acceptable threshold.

The setting of P . Suppose users specify a threshold FPS,
indicating the acceptable FP rate. This threshold estab-
lishes a constraint between the parameters: Max, K, P , m
and FPS according to Corollary 5. Thus, users can set P
based on the other parameters:

P =
1

(1

(1−FPS1/K)1/Max − 1)(1/K − 1/m)
. (17)

Since m is usually much larger than K, 1/m is negligible
in the above equation, which means that the setting of P
is dominated only by FPS, Max, K, and is independent of
the amount of space.

The setting of K. Since the FP constraint can be satisfied
by properly choosing P , we can set K such that it minimizes
the number of FNs. From the above discussions we know
the relationship between the expected number of FNs and
the probabilities that cells are set to Max. Next, we connect
these probabilities with our parameters K, m and the input
stream.

Suppose there are N elements in the stream of which n are
distinct, and the frequency for each distinct element xl is f ′

l .
Clearly

∑n
l=1 f ′

l = N. Assuming that the hash functions are
uniformly at random, for a cell that element xi is hashed to,
the number of times the cell is set to Max after seeing all N
elements is a random variable, fi +

∑n−1
l=1 f ′

l Il, where fi is
the frequency of xi in the stream, and each Il(l = 1 . . . n−1)
is an independent random variable following the Bernoulli

fxn=0.5
fxn=0.1
fxn=0.01
fxn=0.000001

Legend

Max=1, FPS=0.1, m=10^5, delta=200, Phi=10

0.0005

0.001

0.0015

0.002

0.0025

FN
 ra

te

2 4 6 8 10
K

phi=–0.01
phi=0.01
phi=1
phi=10
phi=200

Legend

Max=1, FPS=0.1, m=10^7, delta=200, fxn=0.00001

0

0.0001

0.0002

0.0003

0.0004

0.0005

FN
 ra

te

2 4 6 8 10
K

delta=10
delta=50
delta=100
delta=200
delta=10^7

Legend

Max=1, FPS=0.1, m=10^7, phi=10, fxn=0.00001

5e–05

0.0001

0.00015

0.0002

0.00025

FN
 ra

te

2 4 6 8 10
K

Figure 1: FN rates vs. K

distribution, i.e.

Il =

{
1, P r(Il = 1) = K

m
,

0, P r(Il = 0) = 1 − K
m

.

Thus, ki = 1
N

fi + 1
N

∑n−1
l=1 f ′

l Il is also a random variable.
For the K cells an element xi is hashed to, the probabilities
that those cells are set to Max in each iteration can be
considered as K trials of ki. Since the mean and the variance
of each Il are µIl = K

m
and σ2

Il
= K

m
(1 − K

m
) respectively,

it is not hard to derive that the mean and variance of ki:
µki = 1

N
fi + 1

N
K
m

∑n−1
l=1 f ′

l = 1
N

fi + K
m

(1 − 1
N

fi) and σ2
ki

=
1

N2

K
m

(1 − K
m

)
∑n−1

l=1 f ′

l
2
. Let

φi =
ki − µki√
K
m

(1 − K
m

)
=

ki −
1
N

fi −
K
m

(1 − 1
N

fi)√
K
m

(1 − K
m

)
(18)

be a transformation on ki. Then φi ∈ [−
1

N
fi+

K
m

(1− 1

N
fi)√

K
m

(1− K
m

)
,

1− 1

N
fi−

K
m

(1− 1

N
fi)√

K
m

(1− K
m

)
] is a random variable whose mean and

variance are: µφi = 0 and σ2
φi

= 1
N2

∑n−1
l=1 f ′

l
2
. Note that

σ2
φi

≤ 1
N2

∑n−1
l=1 (f ′

l f
′

max) < 1
N2

∑n
l=1(f

′

l f
′

max) =
f ′

max
N

, where
f ′

max is the frequency of the most frequent element in the
stream. Since the mean and the variance of the random
variable φi are independent of K and m, we may consider
φi independent of K and m in practice. In other words, φi

can be seen as a property of the input stream. Similar to k̄i

we can obtain a φ̄i such that

1−(1−PR0(δi, φ̄i))
K = 1−

K∏

j=1

(1−PR0(δi, φij)) = Pr(FNi)

(19)
where φ̄i ∈ [Min(φij), Max(φij)], and φij are K trials of
φi(j = 1 . . . K). Since the standard deviation of φi is very
small compared to the range of its possible values, and φi

is considered independent of K and m, φ̄i can be approx-
imately considered independent of K and m as well. For

example, when
f ′

max
N

= 0.01, fi
N

= 1
106 , m

K
= 106, the value

range of φi is approximately [0, 1000], while σφi ≤ 0.1.

To set K, keeping all other parameters fixed we vary the
values of K and compute the FN rate based on Eq. 19, 9,
17 and 18. By trying different combinations of parameter
settings (Max = 1, 3, 7, 15, FPS = 0.2, 0.1, 0.01, 0.001, m =
1000, 105, 107, 109, δi = 10, 100, 1000, 105, 107, 109, fxn =
fi
N

= 0.5, 0.1, 0.01, 0.0001, 0.000001 and φ̄i = 0.001, 0.1,

1, 10, 100, 1000, . . .), we find that once the values of FPS
and Max are fixed, the value of the optimal or near optimal
K is independent of the values of δi, fi/N, φ̄i and m.

Observation 1. The value of the optimal or near opti-
mal K is dominated by Max and FPS. The input data and
the amount of the space have little impact on it. Further-
more, the value is small (<10 in all of our testing).

For example, when FPS = 0.2 and Max = 1, the value
of the optimal or near optimal K is always between 1 and
2; when FPS = 0.1 and Max = 3, it is always between
2 and 3; when FPS = 0.01 and Max = 3, it is always
between 4 and 5. Therefore, without considering the input
data stream we can pre-compute the FN rates for different
values of K based on Max and FPS and choose the optimal
one. Our experimental results reported in the next section
are consistent with this observation.

Figure 1 shows an example of how the FN rates change
with different values of K under different parameter set-
tings based on Eq. 19 and Eq. 9. From the figure we can
see that in the case of Max = 1 and FPS = 0.1, we can
set K to 2 regardless of the input stream and the amount
of space. Therefore, in practice we can set φi, δi and fi/N
to some testing values (e.g. 0, 200, 0.00001 respectively) and
find the optimal or near optimal K using the formulas.

The setting of Max. Based on the above discussion, we
can set K regardless of the input data, but to choose a
proper value of Max, we need to consider the input. More
specifically, to minimize the expected number of FNs, we
need to know the distributions of gaps in the stream to try
different possible values of Max on Eq. 16 and 9. Since the
expected value of φi is 0 and its standard deviation is very

small compared to its value domain, we set φ̂ to 0 in the
formulas.

To effectively use the space we only set Max to 2d − 1 (d
is the number of bits/cell), otherwise the bits allocated for
each cells are just wasted. Furthermore, in terms of the time
cost, Max should be set as small as possible, because the
larger Max is set, the larger P will be (see Eq.17, assuming
K is a constant). For example, when Max = 1, FPS = 0.01
and K = 3(the optimal K), the computed value of P is 10;
while Max = 15, FPS = 0.01, and K = 6 (the optimal
K), the value of P computed is 141 (the value of P is not

sensitive to m). In practice, we limit our choice of Max to
1, 3 and 7 (if higher time cost can be tolerated, larger values
of Max can be tried similarly).

To choose a Max from these candidates, we try each value
on Eq. 16 and Eq. 9, and find the one minimizing the average
FN rate.

Figure 2 depicts the difference of average FN rates between
Max = 3 and Max = 1 based on Eq.16 and Eq.9. We set
fi
N

= 0 because we are considering the entire stream rather
than a particular element in this case. The figure shows

that if the values of gaps(δ̂) are smaller than a threshold,
Max = 3 is a better choice. When the gaps become larger,
Max = 1 is better. If the gaps are large enough, there is
not much difference between the two options. The figure

shows the cases under different settings of φ̂, space sizes and
acceptable FP rates.

Space=10^7, FPS=0.1, phi=0
Space=10^7, FPS=0.1, phi=0.001
Space=10^7, FPS=0.1, phi=–0.001
space=2*10^7, FPS=0.1, phi=0
Space=10^7, FPS=0.01, phi=0

Legend

–0.2

–0.1

0

0.1

0.2

FN
 ra

te
 d

iff
er

en
ce

200000 400000 600000 800000 1e+06 1.2e+06
delta

Figure 2: FN rates difference between Max = 3 and
Max = 1 (Max3 − Max1) vs. gaps. K is set to the
optimal value respectively under different settings.

We also tested the FN rate difference between Max = 7
and Max = 3, and observe the same general rule: a larger
value of Max is better for smaller gaps, and a smaller FPS
suggests a larger setting of Max. Similarly, we find no
exceptions under other combinations of settings: FPS =
0.2, 0.1, 0.01, 0.001 and m = 1000, 105, 107, 109.

Trying different value of Max on Eq. 16 and Eq. 9, we set φ̂
to 0 and assume that the distribution of the gaps are known.
If the assumption cannot be satisfied in practice, we sug-
gest setting Max to 1, because this setting often benefits a
larger range of gaps in the stream. And our experiments also
show that in most cases setting Max to 1 achieves better
improvements in terms of error rates compared to the alter-
native method, LRU buffering. In fact, buffering performs
well when gaps are small, which is similar to the cases that
Max is larger. The behavior of our SBF becomes closer to
the buffering method when the value of Max is set larger.

Summary of parameters setting. In practice, given an
FPS, the amount of available space and the gap distribu-
tion of the input data, to set the parameters properly, we
first establish a constraint for P , which means P can be

computed based on FPS, m, Max and K; then find the
optimal values of K for each case of Max(1, 3, 7) by trying
limited number(≤ 10) of values of K on the FN rate for-
mulas; Last, we estimate the expected number of FNs for
each candidate value of Max using its corresponding opti-
mal K and some prior knowledge of the stream, and thus
choose the optimal value of Max. In the case that no prior
knowledge of the input data is available, we suggest setting
Max = 1. The described parameter setting process can be
implemented within a few lines of codes.

4.2 Time Complexity
Since our goal is to minimize the error rates given a fixed
amount of space and an acceptable FP rate, we do not
discuss space complexity, and just focus on time complex-
ity. There are several parameters to be set in our method:
K, Max and P . Within each iteration, we firstly need to
probe K cells to detect duplicates. After that we pick P
cells and decrement 1 from them. Last we set the same K
cells as probed in the first step to Max.

Therefore, the time cost of our algorithm for handling each
element is dominated by K and P .

Theorem 4 (Time Complexity). Given that K and
Max are constants, processing each data stream element
needs O(1) time, independent of the size of the space and
the stream.

Proof. From Eq.17 we know the constraint among K,
P , m, Max and FPS(the user-specified upper bound of
false positive rates). If K, Max and FPS are constants,
the relationship between P and m is inversely proportional,
which means m has no impact on the processing time. Since
Max, K and FPS are all constants, the time complexity is
O(1).

Based on the discussion of parameter settings, we know that
the selection of K is insensitive to m. Furthermore, the value
of m and the stream size have little impact on the selection
of Max based on our testing on Eq. 16. Therefore, our
algorithm needs O(1) time per element, independent of the
size of space.

5. EXPERIMENTS
In this section, we first describe our data set and the im-
plementation details of 4 methods: SBF, Bloom Filter(BF),
Buffering and FPBuffering (a variation of buffering which
can be fairly compared to SBF). We then report some of
the results on real data sets. We also ran experiments on
some synthetic data sets, but due to the page limit, we can
not show the results here. Last, we summarize the compar-
ison between different methods.

5.1 Data Sets
Real World Data. We simulated a web crawling sce-
nario[8] as discussed in Section 1, using a Web crawl data
set obtained from the Internet archive[2]. We hashed each
URL in this collection to a 64-bit fingerprint using Rabin’s
method [27], as was done earlier [8]. With this fingerprint-
ing technique, there is a very small chance that two different

URLs are mapped to the same fingerprint. We verified the
data set and did not find any collisions between the URLs.
In the end, we obtained a 28GB data file that contained
about 700 million fingerprints of links, representing a stream
of URLs encountered in a Web crawling process.

5.2 Implementation Issues
SBF Implementation. Our algorithm is simple and straight-
forward to implement: 1) hash each incoming stream ele-
ment into K numbers, and check the corresponding K cells;
2) generate a random number, decrement the correspond-
ing cell and (P-1) cells adjacent to it by 1; this process is
faster than generating P random numbers for each element;
although the processes of picking the P cells are not inde-
pendent, each cell has a probability of P/m for being picked
at each iteration. Our analysis still holds. 3) Set those K
cells checked in step 1 to Max. One issue we have to deal
with is setting the parameters Max, K and P.

According to the discussions of parameters setting in the
previous section, we can set Max, K and P for a given
FPS without considering the input data sets. For example,
for FPS=10%, we set Max=1, K=2 and P=4, which worked
well for different data sets in our experiments. To evaluate
our work, we implemented 3 alternative methods: Bloom
Filters(BF), buffering and FPBuffering.

Bloom Filters Implementation. In our implementa-
tion, BF becomes a special case of SBF where Max=1 and
P=0. Knowing the number of distinct elements and the
amount of space, we can compute the optimal K (see the
discussion in Section 2.3).

Buffering Implementation. Implementing buffering needs
more work. First, to detect duplicates we need to search the
buffer. To speed up the searching process, we used a hash
table, as was done by Broder et al. [8]. Second, when the
buffer is full, we have to choose a policy to evict an old ele-
ment and make room for the newly coming one. Broder et al.
[8] compared 5 replacement policies for caching Web crawls.
They showed that LRU and Clock, the latter of which is
used as an approximation of LRU, were the best practical
choices for the URL data set (there were some ideal but im-
practical ones as well); in terms of miss rate (FN rate in
our case), there was almost no difference between these two
though. We chose LRU in our experiments. Both LRU and
clock need a separate data structure for buffering elements,
so that we can choose one for eviction [8]. For simplicity
of the implementation, we used a double linked list, while
Broder et al. chose a heap. This difference should not affect
our experimental results since our error rate comparison did
not account for the extra space we used in buffering.

FPbuffering Implementation. To fairly and effectively
compare our method to buffering method, we introduced
a variation of buffering called FPbuffering. There are two
reasons for this. First, SBF has both FPs and FNs while
buffering has only FNs. In different applications the impor-
tance of FPs and FNs may be different. So it is hard to
compare SBF to buffering directly. Second, the fraction of
duplicates in the data stream is a dominant factor affecting
the error rates, because FNs are only generated by dupli-
cates and FPs by distincts. For buffering, a data stream full

of duplicates will cause many FNs, while a stream consisting
of all distincts cause no errors at all.

FPbuffering works as follows: when a new data stream el-
ement arrives, we search it in the buffer. If found, report
duplicate as in the original buffering; if not found, we re-
port it as a duplicate with a probability q, and as a distinct
with probability (1 − q). In the original buffering, if an el-
ement is not found in the buffer, it is always reported as a
distinct. This variation can increase the overall error rates
of buffering when there are more distincts in the stream,
but can decrease the error rates when there are more dupli-
cates in the stream. Clearly, FPbuffering has both FPs and
FNs. In fact, q is the FP rate since a distinct element will
be reported as duplicate with a probability q. By setting
a common FP rate with SBF, we can fairly compare their
FN rates, and this comparison will not be affected by the
fraction of duplicates in the stream.

In our experiments, we assumed that buffering and FP-
buffering required 64 bits per URL fingerprint on the Web
data (same as [8]). and 32 bits per element on the synthetic
data simulating the size of an IP address. In other words,
each element occupies 64 bits for the real data. and 32 bits
for the synthetic data.

5.3 Theory Verification
In an experiment to verify some of our theoretical results, we
tested the stable properties of our SBF and the convergence
rate. The results are shown in Figures 3. From the graph we
can see that the fraction of zeros in the SBF decreases until
it becomes stable. When the allocated space is small, the
convergence rate is higher. This is because when the space
is larger, the probability a cell being set is smaller. From
Corollary 2 and Eq. 6 we know the convergence rate should
be lower in this case. Also, we can see that when the SBF
is stable, the fraction of zeros is still fluctuating slightly.
This can be caused by the input data stream whose under-
lying distributions is varying. Furthermore, the fraction of
0s keeps decreasing in general before being stable; at this
point, the FP rate should reach its maximum, and our theo-
retical upper bound for FP rates is also valid before the SBF
become stable in this case. Our next experiments show the
effectiveness of our theoretical FP bound. When the space
is relatively small, the real FP rate is close to the bound.

5.4 Error Rates Comparison
This experiment compared the error rates between SBF, FP-
buffering, buffering and BF on the real data by varying the
size of the space. The real data set contained 694,984,445
URL fingerprints, of which 14.75% were distinct. To do the
comparison under different fractions of distinct elements, we
built two more real data sets by using the first 100,000 and
10 million elements of the original data file. The fractions
of distinct elements for these two data set respectively were
75.66% and 48.51%. For SBF, we set the acceptable FP
rate (number of FPs/number of distincts), FPS, to 10%,
and Max, K,P to 1, 2, 4 respectively. The results under dif-
ferent FPS settings will be shown in the next experiment.
For FPbuffering, we set the FP rates to the same number
as SBF so that both generated exactly the same number of
FPs, and we can just compare their FN rates. Please note
that buffering and BF only generate FNs and FPs respec-

Figure 3: Fraction of zeros changed with time
on the whole real data set (Max=1, K=2, P=4,
FPS=10%), space unit=64bits

tively, and FPbuffering reduces the FN rates of buffering
substantially in most cases by introducing a certain amount
of FPs.

Figure 4: Error rates comparison between SBF, FP-
Buffering, Buffering and BF

Comparison between different methods. The tables in
Figure 4 show that when the space is relatively small, SBF
is better. SBF beats FPbuffering by 3-13% in terms of FN
rate on different data sets, when their FP rates are the same.
For the problem we are studying, we think this amount of
improvement is nontrivial for 2 reasons. First, Broder et al.
[8] implemented a theoretically optimal buffering algorithm
called MIN, which assumes ”the entire sequence of requests
is known in advance”, and accordingly chooses the best re-
placement strategy. Even this obviously impractical and
ideal algorithm can only reduce the miss rates (FN rates
in our case) of the LRU buffering, by no more than 5%
in about 2/3 region (different buffer sizes). Second, from
the tables we can see that even increasing the amount of
the space by a factor of 4, the FN rates for buffering can

be decreased by around 10-20%, which means the improve-
ment from SBF may be equivalent of that from doubling the
amount of space. The FP rates of BF is much higher than
the acceptable FP rates in the first 2-3 rows of each table.
Since buffering only generates FNs, it is not comparable to
SBF here. But we can see that the FN rates of FPbuffering
also decrease by introducing FPs into it.

However, we also notice that when the space is relatively
large (the last row of each table), SBF performs not as good
as buffering and BF. This is because when the space is large,
BF might be able to hold all the distincts and keep a reason-
able FP rates. We can directly compute the amount of space
required based on the FP rates desired and the number of
distincts in the data set according to the formula in Section
2.3. In this case, there is no need to evict information out
of the BF, which means SBF is not applicable. If we can
afford even more space, which is large enough to hold all
the distincts in the data set using a buffer, there will be no
errors at all. The last row of the second table shows this
scenario. But in many data stream applications, a fast stor-
age is needed to satisfy real time constraints and the size of
this storage is typically less than the universe of the stream
elements as discussed in Introduction.

Another fact is that in both SBF and buffering, we can
refresh the storage and bias it towards recent data; they
both evict stale information continuously and keep those
fresh elements. While BF is not applicable in this case since
BF can be only used to represent a static data set. Thus,
it is not useful in many data stream scenarios that require
dynamic updates.

Varying acceptable FP rates. Another experiment
we ran was to test the effect of changing the acceptable FP
rates. The results are shown in Figure 5. In this experi-
ments, we set Max=3, K=4 when acceptable FP rates are
set to 0.5% and 1%, and set Max=1, K=2 when acceptable
FP rates are set to 10% and 20%. The bar chart depicts the
FN rate difference between FPbuffering and SBF. Again,
the FP rates of both methods are set to the same number.
Clearly, it shows that the more FPs are allow, the better
SBF performs.

Figure 5: FN rate differences between FPBuffering
and SBF varying allowable FP rate(695M elements)

5.5 Time Comparison

As discussed in the implementation section, SBF and BF
need O(1) time to process each element. The exact time
depends on the the parameter settings. For example, when
K=2 and P=4, SBF needs less than 10 operations within
each iteration.

For buffering and FPbuffering, their processing time is the
same. It depends on 2 processes: element searching and
element evicting. Searching can be quite expensive with-
out an index structure. Both our experiments and those of
Broder et al.[8] used a hash table to accelerate the search
process. The extra space that is needed for a hash table
to keep the search time constant is linear in the number of
elements stored. The process of maintaining the LRU re-
placement policy(finding the least recently used element) is
also costly, and extra space is needed to make it faster. This
extra space can be quite large for LRU. However, this cost
can be reduced to 2 bits per elements by using the Clock
approximation of LRU [8].

Therefore, buffering and FPbuffering need extra space lin-
ear in the number of buffer entries to reach a similar O(1)
processing time. But in our error rate comparison, we did
not count this extra space for buffering and FPbuffering.

5.6 Methods Comparison Summary
We compared 4 methods in this section: SBF, BF, FPbuffer-
ing and buffering. Among them, BF and buffering have only
FPs and FNs respectively, and SBF and FPbuffering have
errors of both sides.

BF is a space efficient data structure which has been studied
in the past and is widely used. It is good for representing
a static set of data provided that the number of distinct el-
ements is known. However, in data stream environments,
the data is not static and it keeps changing. Usually it is
hard to know the number of distinct elements in advance.
Moreover, BF is not applicable in cases where dynamic up-
dates are needed since elements can only be inserted into
BF, but cannot be dropped out. Consequently, BF is not
suitable for many data stream applications. Another varia-
tion of BF, counting BF, allows deletions, but it is still not
applicable in the scenario we consider. See the discussion in
the first paragraph of the related work section.

SBF, buffering and FPBuffering can be all applied to data
stream scenarios. SBF is better in terms of accuracy and
time when certain amount of FP rates are acceptable and
the space is relatively small, which is the case in many data
stream applications due to the real-time constraint. When
the space is relatively large or only tiny FP rates are allowed,
buffering is better.

6. RELATED WORK
The recent work of Metwally et al.[24]also study the dupli-
cate detection problem in a streaming environment based
on Bloom filters(BF) [7]. They consider different window
models: Landmark windows, sliding windows and jumping
windows. For the landmark window model, which is the sce-
nario we consider, they apply the original Bloom filters with-
out variations to detect duplicates, and thus do not consider
the case that the BFs become “full”. For the sliding window
model, they use counting BFs [18] (change bits into coun-

ters) to allow removing old information out of the Bloom
filter. However, this can be done only when the element to
be removed is known, which is not possible in many stream-
ing cases. For example, if the oldest element needs to be
removed, one has to know that which counters are touched
by the oldest element, but this information cannot be found
in counting BFs, and maintaining this knowledge can be
quite expensive. For the jumping window model, they cut a
large jumping window into multiple sub-windows, and rep-
resent both the jumping window and the sub-windows with
counting BFs of the same size. Thus, the jumping window
can “jump” forward by adding and removing sub-window
BFs.

Another solution for detecting duplicates in a streaming en-
vironment is the buffering or the caching method, which has
been studied in many areas such as database systems, com-
puter architecture, operating systems, and more recently
URL caching in Web crawling [8]. We compare our method
with those of Broder et al.[8] in the experiments. The prob-
lem of exact duplicate elimination is well studied, and there
are many efficient algorithms(e.g. see [20] for details and
references). For the problem of approximate membership
testing in a non-streaming environment, the Bloom filter has
been frequently used and occasionally extended [18, 25]. Co-
hen and Matias[14] extend the Bloom filter to answer multi-
plicity queries. Counting distinct elements using the Bloom
filter is proposed by Whang et al.[31]. Another branch of
duplicate detection focus on fuzzy duplicates [11, 1, 6, 30],
where the distinction between elements is not straightfor-
ward to see.

A related problem to duplicate detection is counting the
number of distinct elements. Flajolet and Martin[19] pro-
pose a bitmap sketch to address this problem in a large
data set. The same problem is also studied by Cormode et
al. [15], and a sketch based on stable random variables is in-
troduced. Besides, the sticky sampling algorithm of Manku
and Motwani [23] also randomly increment and decrement
counters storing the frequencies of stream elements, but the
decrement frequency is varying and not for each incoming
element. Their goal is to find the frequent items in a data
stream.

As for data stream systems [3, 9, 29, 10, 16, 12], as far as
we know, most of them divide the potentially unbounded
data stream into windows with limited size and solve the
problem precisely within the window. For example, Tucker
et al. introduce punctuations into data streams, and thus
duplicate eliminations could be implemented within data
stream windows using traditional methods[29].

Since there is no way to store the entire history of an infinite
data stream using limited space, our SBF essentially repre-
sents the most recent information by discarding those stale
continuously. This is useful in many scenarios where the re-
cent data is more important and this importance decays over
time. A number of such kinds of applications are provided
in [13] and [26]. Our motivating example of web crawling
also has this property, since it may not matter that much
to redundantly fetch a Web page that have been crawled a
long time ago compared to fetching a page that have been
crawled more recently.

7. CONCLUSIONS
In this paper, we propose the SBF method to approximately
detect duplicates for streaming data. When a certain false
positive rate is allowed, SBF is superior in terms of both
accuracy and time for a fixed amount of space compared
to the alternative methods. Extending our work to handle
sliding window queries is a future direction.

Acknowledgement
This work is supported by Natural Sciences and Engineering
Research Council of Canada. We like to thank the anony-
mous reviewers for their comments and Ahmed Metwally for
his feedback.

8. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.

Eliminating fuzzy duplicates in data warehouses. In
Proc. of VLDB, 2002.

[2] Internet Archive. http://www.archive.org/.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. of PODS, 2002.

[4] B. Babcock, M. Datar, and R. Motwani. Load
shedding for aggregation queries over data streams. In
Proc. of ICDE, 2004.

[5] F. Baboescu, S. Singh, and G. Varghese. Packet
classification for core routers: Is there an alternative
to cams? In Proc. of INFOCOMM, 2003.

[6] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity m easures.
In Proc. of KDD, 2003.

[7] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. In CACM, 1970.

[8] A. Z. Broder, M. Najork, and J. L. Wiener. Efficient
url caching for world wide web crawling. In Proc. of
WWW, 2003.

[9] D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. B.Zdonik. Monitoring streams - a new class of data
management applications. In Proc. of VLDB, 2002.

[10] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. A. Shah. Telegraphcq: Continuous dataflow
processing for an uncertain world. In Proc. of CIDR,
2003.

[11] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. In Proc. of ICDE,
2005.

[12] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
Niagaracq: A scalable continuous query system for
internet databases. In Proc. of SIGMOD, 2000.

[13] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. In Proc. of PODS, 2003.

[14] S. Cohen and Y. Matias. Spectral bloom filters. In
Proc. of SIGMOD, 2003.

[15] G. Cormode, M. Datar, P. Indyk, and
S.Muthukrishnan. Comparing data streams using
hamming norms (how to zero in). IEEE Trans.
Knowl. Data Eng., 15(3):529–540, 2003.

[16] C. Cranor, T. Johnson, O. Spatscheck, and
V. Shkapenyuk. Gigascope: A stream database for
network applications. In Proc. of SIGMOD, 2003.

[17] C. Estan and G. Varghese. Data streaming in
computer networks. In Proc. of Workshop on
Management and Processing of Data Streams(MPDS)
in cooperation with SIGMOD/PODS, 2003.

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary cache:a scalable wide area web cache
sharing protocol. IEEE/ACM Trans. Netw.,
8(3):281–293, 2000.

[19] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput.
Syst. Sci., 31(2):182–209, 1985.

[20] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database System Implementation. Prentice Hall, 2000.

[21] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. World Wide Web, 2(4), 1999.

[22] Cisco System Inc. Cisco network accounting services.
http://www.cisco.com/warp/public/cc/pd/iosw/

prodlit/nwact_wp.pdf, 2002.

[23] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. of VLDB, 2002.

[24] A. Metwally, D. Agrawal, and A. E. Abbadi. Duplicate
detection in click streams. In Proc. of WWW, 2005.

[25] M. Mitzenmacher. Compressed bloom filters.
IEEE/ACM Trans. Netw., 10(5):604–612, 2002.

[26] T. Palpanas, M. Vlachos, E. J. Keogh, D. Gunopulos,
and W. Truppel. Online amnesic approximation of
streaming time series. In Proc. of ICDE, 2004.

[27] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[28] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. In Proc. of VLDB, 2003.

[29] P. A. Tucker, D. Maier, and T. Sheard. Applying
punctuation schemes to queries over continuous data
streams. IEEE Data Eng. Bull., 26(1):33–40, 2003.

[30] M. Weis and F. Naumann. Dogmatix tracks down
duplicates in xml. In Proc. of SIGMOD, June 2005.

[31] K. Whang, B. T. V. Zenden, and H. M.Taylor. A
linear-time probabilistic counting algorithm for
database applications. ACM Trans. Database Syst.,
15(2):208–229, 1990.

