
SOLVING ITERATION PROBLEMS WITH
PURRR

CHARLOTTE WICKHAM

YOUR TURN

GETTING SETUP
1. Download slides @ http://bit.ly/purrr-slides

2. Check you have packages:

library(tidyverse)

library(repurrrsive) # devtools::install_github("jennybc/repurrrsive")

SOLVING ITERATION
 PROBLEMS WITH PURRR

http://bit.ly/purrr-slides

SOLVE ITERATION PROBLEMS

ITERATION PROBLEMS  FOR EACH ___ DO ___
You are already solving them:

copy & paste, for loops, (l/s)apply()

I'll show you an alternative purrr::map() & friends

https://github.com/tidyverse/purrr

Download slides @ http://bit.ly/purrr-slides

https://github.com/tidyverse/purrr
http://bit.ly/purrr-slides

YOUR TURN

library(repurrrsive)

includes objects: sw_films, sw_people, sw_vehicles,  
sw_starships, sw_planets & sw_species 

1. How many elements are in sw_people?

2. Who is the first person listed in sw_people? What
information is given for this person?

3. What is the difference between sw_people[1] and
sw_people[[1]]?

BEWARE!
ANSWERS ON FOLLOWING SLIDE

Download slides @ http://bit.ly/purrr-slides

http://bit.ly/purrr-slides

length(sw_people)

[1] 87

sw_people[[1]]

$name
[1] "Luke Skywalker"

$height

[1] "172"

$mass
[1] "77"

$hair_color
[1] "blond"

$skin_color
[1] "fair"

$eye_color

[1] "blue"

$birth_year
[1] "19BBY"

$gender
[1] "male"

$homeworld

[1] "http://swapi.co/api/planets/1/"

$films

[1] "http://swapi.co/api/films/6/"
[2] "http://swapi.co/api/films/3/"
[3] "http://swapi.co/api/films/2/"
[4] "http://swapi.co/api/films/1/"

[5] "http://swapi.co/api/films/7/"

$species
[1] "http://swapi.co/api/species/1/"

$vehicles
[1] "http://swapi.co/api/vehicles/14/"
[2] "http://swapi.co/api/vehicles/30/"

$starships
[1] "http://swapi.co/api/starships/
12/"
[2] "http://swapi.co/api/starships/
22/"

$created
[1] "2014-12-09T13:50:51.644000Z"

$edited

[1] "2014-12-20T21:17:56.891000Z"

$url
[1] "http://swapi.co/api/people/1/"

YOUR TURN

Photo credit: https://www.flickr.com/photos/alreadytaken/ CC BY 2.0

https://creativecommons.org/licenses/by/2.0/

map()

map(.x, .f, ...)
for each element of .x do .f

‣ a vector

‣ a list

‣ a data frame (for each column)

.x .f
We'll get to that...

map(sw_people, ____)

STRATEGY
1.Do it for one element

2.Turn it into a recipe

3.Use map() to do it for all elements

HOW MANY STARSHIPS HAS EACH CHARACTER BEEN IN?
for each person in sw_people, count the number of starships

YOUR TURN

luke <- sw_people[[1]]

HOW MANY STARSHIPS HAS LUKE BEEN IN?
Write a line of code to find out.

Bored? Find the names of those starships...

length($starships)

luke <- sw_people[[1]]

DO IT FOR ONE

luke

Solve the problem for one element

length($starships)

luke <- sw_people[[1]]

DO IT FOR ONE

luke

Solve the problem for one element

length($starships)

leia <- sw_people[[5]]

DO IT FOR ONE

leia

Solve the problem for one element

length($starships)

DO IT FOR ONE

Solve the problem for one element

____ <- sw_people[[?]]

length($starships)

TURN IT INTO A RECIPE

____~
A formula

 .x
purrr's "pronoun" for

one element of our vector

Make it a formula

Use .x as a pronoun

length($starships)

DO IT FOR ALL!

~
A formula

map(,

)

Your recipe is the second argument to map

sw_people

 .x
purrr's "pronoun" for

one element of our vector

map(sw_people, ~ length(.x$starships))

Copy and paste ME.

YOUR TURN

Create planet_lookup (ignore details for now):

planet_lookup <- map_chr(sw_planets, "name") %>%

 set_names(map_chr(sw_planets, "url"))

planet_lookup

FIND THE NAME OF EACH CHARACTERS HOME WORLD.

Bored? Find the body mass index (BMI) of all characters.

bmi = (mass in kg) / ((height in m)^2)

luke$homeworld

[1] "http://swapi.co/api/planets/1/"

planet_lookup[luke$homeworld]

http://swapi.co/api/planets/1/

"Tatooine"

map(sw_people, ~ planet_lookup[.x$homeworld])

[[1]]

http://swapi.co/api/planets/1/

"Tatooine"

[[2]]

http://swapi.co/api/planets/1/

"Tatooine"

[[3]]

http://swapi.co/api/planets/8/

"Naboo"

...

ARE YOU PURRRING YET?

ROADmap()

Other types of output

Other ways of specifying .f

Other iteration functions

map_lgl(.x, .f, ...)

ROADmap()

Other types of output

Other ways of specifying .f

Other iteration functions

map(.x, length, ...)

ROADmap()

Other types of output

Other ways of specifying .f

Other iteration functions

map2(.x, .y, .f, ...)

map() details

map_lgl() logical vector
map_int() integer vector
map_dbl() double vector
map_chr() character vector

map() always returns a list

Result: No surprises! 
vector same length as .x or an ERROR

SIMPLER OUTPUT:

walk() - when you want nothing at all, 
 use a function for its side effects

YOUR TURN

names can be useful

sw_people <- sw_people %>% set_names(map_chr(sw_people, "name"))

REPLACE map() WITH THE APPROPRIATELY TYPED FUNCTION
How many starships has each character been in?

map(sw_people, ~ length(.x[["starships"]]))

What color is each character's hair?

map(sw_people, ~ .x[["hair_color"]])

Is the character male?

map(sw_people, ~ .x[["gender"]] == "male")

How heavy is each character?

map(sw_people, ~ .x[["mass"]])

How many starships has each character been in?

map_int(sw_people, ~ length(.x[["starships"]]))

Luke Skywalker C-3PO R2-D2 Darth Vader

2 0 0 1 ...

What color is each character's hair?

map_chr(sw_people, ~ .x[["hair_color"]])

Luke Skywalker C-3PO R2-D2 Darth Vader

"blond" "n/a" "n/a" "none" ...

Is the character male?

map_lgl(sw_people, ~ .x[["gender"]] == "male")

Luke Skywalker C-3PO R2-D2 Darth Vader

TRUE FALSE FALSE TRUE ...

How heavy is each character?

map_dbl(sw_people, ~ .x[["mass"]])

Error: Can't coerce element 1 from a character to a double

Doesn't work...because we get a string back

map(sw_people, ~ .x[["mass"]])

[[1]]

[1] "77"

[[2]]

[1] "75"

...

A little risky

map_dbl(sw_people, ~ as.numeric(.x[["mass"]]))

[1] 77.0 75.0 32.0 136.0 49.0 120.0 75.0 32.0 84.0
... 
There were 29 warnings (use warnings() to see them)

Probably want something like:

map_chr(sw_people, ~ .x[["mass"]]) %>%

 readr::parse_number(na = "unknown")

[1] 77.0 75.0 32.0 136.0 49.0 120.0 75.0 32.0 84.0
...

.f CAN BE A FORMULA

map_int(sw_people, ~ length(.x[["starships"]]))
map_chr(sw_people, ~ .x[["hair_color"]])
map_chr(sw_people, ~ .x[["mass"]])

map(.x, .f = ~ DO SOMETHING WITH .x)

.f CAN BE A STRING OR INTEGER

map(.x, .f = "some_name")

map(.x, ~ .x[["some_name"]])

For each element, extract the named/numbered element

equivalent to

.f CAN BE A STRING OR INTEGER

map_chr(sw_people, ~ .x[["hair_color"]])
becomes
map_chr(sw_people, "hair_color")

map(.x, .f = some_number)

map(.x, ~ .x[[some_number]])

equivalent to

For each element, extract the named/numbered element

.f CAN BE A FUNCTION
map(.x, .f = some_function, ...)

gets passed on to .f

don't be afraid to do things in
little steps and pipe them
together

map(.x, ~ some_function(.x, ...))

equivalent to

char_starships <- map(sw_people, "starships")

map_int(char_starships, length)

In one go

map(sw_people, "starships") %>% map_int(length)

also equivalent to

map_int(sw_people, ~ length(.x[["starships"]]))

Create planet_lookup (ignore details for now):

planet_lookup <- map_chr(sw_planets, "name") %>%

 set_names(map_chr(sw_planets, "url"))

planet_lookup

FROM EARLIER...

names(x) <- y

x

x %>% set_names(y) equivalent to

WHAT ABOUT sapply() & lapply()?

What type of object does sapply() return?

Motivation for purrr:

• consistent return type,

• useful shortcuts,

• consistent syntax for more complicated iteration

It depends.

YOUR TURN

STAR WARS CHALLENGES
Which film (see sw_films) has the most characters?

Which sw_species has the most possible eye colors?

Which sw_planets do we know the least about (i.e. have the most "unknown"
entries)?

BREAK?

Which film (see sw_films) has the most characters?

map(sw_films, "characters") %>%

 map_int(length) %>%

 set_names(map_chr(sw_films, "title")) %>%

 sort()

Which species has the most possible eye colors?

sw_species[[1]]$eye_colors

map_chr(sw_species, "eye_colors") %>%

 strsplit(", ") %>%

 map_int(length)

this is lazy, what about n/a and unknown?

More iteration
functions

map(,)
to each element of .x apply .f

.f.x

map(,)
to each element of .x apply .f

🐈

🐆

🐅

cat give_fish

🐟🐈

🐟🐆

🐟🐅

give_fish

walk(,)
to each element of .x apply .f

Expect nothing in return
You actually get .x invisibly back,
good for piping

.f.x

walk(,)
to each element of .x apply .f

🐈

🐆

🐅

cat love

love Expect nothing in return
You actually get .x invisibly back,
good for piping

For functions called for their side effects:

‣ printing to screen

‣ plotting to graphics device

‣ file manipulation (saving, writing, moving etc.)

‣ system calls

to each element of .x and corresponding element of .y apply .f

map2(, ,) .f.x .y

🐈

🐆

🐅

to each element of .x and corresponding element of .y apply .f

map2(, ,) 🐈🐈🐈

🐆

🐅🐅

3

1

2

cat reptimes

rep

walk2(), map2_lgl(), map2_int(), map2_dbl(), map2_chr()

Always get a list back, or use:

YOUR TURN

DISCUSS WITH YOUR NEIGHBOR
1. For each function, which two arguments might be useful to iterate over?

download.file()

rnorm()

lm()

predict.lm()

write.csv()

2. For which functions above should we use walk2() or a typed version of
map2()?

walk2(), map2_int()

 walk2()

download.file() for each url download to destfile

rnorm() for each n generate a Normal sample with mean mean (or sd)  
(See purrr::rerun() for repeating a function many times)

lm() for each data fit a model (formula)

predict.lm() for each model (object) , generate predictions at data
(newdata)

readr::write_csv() for each data frame (x) save to path  
Similar for ggplot::ggsave() for each plot save to filename

YOUR TURN

jan_sales <- read_csv("jan.csv")

jan_sales <- mutate(jan_sales, month = "jan") 

feb_sales <- read_csv("feb.csv")

feb_sales <- mutate(feb_sales, month = "feb")

 
mar_sales <- read_csv("mar.csv")

mar_sales <- mutate(mar_sales, month = "mar")

 
sales <- bind_rows(jan_sales, feb_sales, mar_sales)

WHAT DOES
THIS CODE
DO?

REDUCE DUPLICATION (AND MISTAKES) WITH PURRR

months <- c("jan", "feb", "mar")

files <- paste0(months, ".csv")

sales_list <- map(files, read_csv)

Now...For each element (do) add a month column

USE THE SAME STRATEGY!

DO IT FOR ONE Solve the problem for one element

mutate(sales_list[[1]],

 month = months[[1]])

DO IT FOR ONE Solve the problem for one element

mutate(sales_list[[1]],

 month = months[[1]])

DO IT FOR ONE Solve the problem for one element

mutate(sales_list[[2]],

 month = months[[2]])

DO IT FOR ONE Solve the problem for one element

mutate(sales_list[[2]],

 month = months[[2]])
Iterating over two objects!

mutate(sales_list[[2]],

 month = months[[2]])

TURN IT INTO A RECIPE Make it a formula

Use .x and .y

mutate(sales_list[[2]],

 month = months[[2]])

TURN IT INTO A RECIPE Make it a formula

Use .x and .y

~
A formula

TURN IT INTO A RECIPE

~
A formula

Make it a formula

Use .x and .y

mutate(,

 month =)

.x
.y

DO IT FOR ALL!

~

map2(.x = ,

 .y = ,

Your recipe is the .f argument to map2

sales_files

months

mutate(,

 month =))

.x
.yA formula

months <- c("jan", "feb", "mar")

files <- paste0(months, ".csv")

sales_list <- map(files, read_csv)

sales_list_months <- map2(.x = sales_list,

 .y = months,

 .f = ~ mutate(.x, month = .y)

bind_rows(sales_list_months)

YOUR TURN

library(repurrrsive)

gap_split_small <- gap_split[1:10]

countries <- names(gap_split_small)

FOR EACH COUNTRY CREATE A GGPLOT OF LIFE
EXPECTANCY THROUGH TIME WITH A TITLE
Need a hint? For one country, see next slide
Bored? For each plot, save it to a .pdf, with an
appropriate file name

For one country

ggplot(gap_split[[1]], aes(year, lifeExp)) +

 geom_line() +

 labs(title = countries[[1]])

For all countries

plots <- map2(gap_split_small, countries,

 ~ ggplot(.x, aes(year, lifeExp)) +

 geom_line() +

 labs(title = .y))

plots[[1]]

Display all plots

walk(plots, print) # this might take awhile

purrr and  
list columns

Data should be in a data frame as soon as it makes sense!

Data frame: cases in rows, variables in columns

YOUR TURN:
What are the cases and variables in the sw_people data?

PURRR AND LIST COLUMNS

A tibble: 87 × 4

 name films height species

 <chr> <list> <dbl> <chr>

1 Luke Skywalker <chr [5]> 172 http://swapi.co/api/species/1/

2 C-3PO <chr [6]> 167 http://swapi.co/api/species/2/

3 R2-D2 <chr [7]> 96 http://swapi.co/api/species/2/

4 Darth Vader <chr [4]> 202 http://swapi.co/api/species/1/

5 Leia Organa <chr [5]> 150 http://swapi.co/api/species/1/

... with 82 more rows

library(tidyverse)

people_tbl <- tibble(

 name = ,

 films = ,

 height =

 ,

 species =

)

PURRR CAN HELP TURN LISTS INTO TIBBLES

library(tidyverse)

people_tbl <- tibble(

 name = sw_people %>% map_chr("name"),

 films = sw_people %>% map("films"),

 height = sw_people %>% map_chr("height") %>%

 readr::parse_number(na = "unknown"),

 species = sw_people %>% map_chr("species", .null = NA_character_)

)

PURRR CAN HELP TURN LISTS INTO TIBBLES

will result in list column

needs some parsing

isn't in every element

people_tbl$films

people_tbl %>%

 mutate(

film_numbers = map(films, ~ film_number_lookup[.x]),

 n_films = map_int(films, length)

)

COMBINE PURRR WITH DPLYR TO WORK WITH LIST COLUMNS

library(tidyverse)
library(repurrrsive)

A useful lookup table ---
film_number_lookup <- map_chr(sw_films, "url") %>%
 map(~ stringr::str_split_fixed(.x, "/", 7)[, 6]) %>%
 as.numeric() %>%
 set_names(map_chr(sw_films, "url"))

people_tbl <- tibble(
 name = sw_people %>% map_chr("name"),
 films = sw_people %>% map("films"),
 height = sw_people %>% map_chr("height") %>%
 readr::parse_number(na = "unknown"),
 species = sw_people %>% map_chr("species", .null = NA_character_)
)

Turning parts of our list to a tibble ---------------------------------
people_tbl$films

Use map with mutate to manipulate list columns
people_tbl <- people_tbl %>%
 mutate(
 film_numbers = map(films,
 ~ film_number_lookup[.x]),
 n_films = map_int(films, length)
)

people_tbl %>% select(name, film_numbers, n_films)

Copy and paste ME.

YOUR TURN

Create a new character column that collapses the film numbers into a
single string,

e.g. for Luke: " 6, 3, 2, 1, 7"

?paste

people_tbl <- people_tbl %>%

 mutate(films_squashed = map_chr(film_numbers, paste,

 collapse = ", "))

people_tbl %>% select(name, n_films, films_squashed)

YOUR TURN

CHALLENGES
challenges/01-mtcars.R - Fit and summarise many regression models

challenges/02-word_count.R - Count the number of words of all files in a directory

challenges/03-starwars.R - Print who used which vehicles in the films

challenges/04-weather.R - Download, tidy, plot and save daily temperatures

challenges/05-swapi.R - Download all Star Wars data using rwars package

Next up: a few remaining iteration functions, a comment about other functions in
purrr, wrap up.

@ https://github.com/cwickham/purrr-tutorial

https://github.com/cwickham/purrr-tutorial

OTHER FEATURES OF
PURRR

pmap(.l , .f , ...)
to each element of each vector in .l, apply .f

.f(.l[[1]][[1]], .l[[2]][[1]], .l[[3]][[1]], ...)

.f(.l[[1]][[2]], .l[[2]][[2]], .l[[3]][[1]], ...)

.f(.l[[1]][[3]], .l[[2]][[3]], .l[[3]][[1]], ...)

and so on
or by name if supplied

to each element of each vector in .l, apply .f

pmap(list(, ,),)🐈

🐆

🐘

🐈❤🐈

🐆❓🐋

🐘💣🐁

❤

❓

💣

in animal, reaction,
and animal2 c

🐈

🐋

🐁

data.frame c

no formula shortcut

invoke_map(.f, .x, ...)
for each function in .f, apply it to .x

.f[[1]](.x, ...)

.f[[2]](.x, ...)

.f[[3]](.x, ...)

and so on

invoke_map(,)
for each function in .f, apply it to .x

give_fish

count_legs

double

🐟🐈

4

🐈🐈

🐈

LISTS AND FUNCTIONS
Key objects in purrr

purrr provides a pile of functions to make working with them easier

Functions: safely(), possibly(), partial()

Lists: transpose(), accumulate(), reduce(), every(), order_by()

WRAP UP

purrr provides:

‣ functions that write for loops for you

‣ with consistent syntax, and

‣ convenient shortcuts for specifying functions to iterate

Choosing the right function depends on:

• type of iteration

• type of output

LEARNING MORE

R for Data Science:

‣ http://r4ds.had.co.nz/iteration.html

‣ http://r4ds.had.co.nz/many-models.html

DataCamp Writing functions in R  
https://www.datacamp.com/courses/writing-functions-in-r

Jenny Bryan's purrr tutorial 
https://github.com/jennybc/purrr-tutorial

http://r4ds.had.co.nz/iteration.html
http://r4ds.had.co.nz/many-models.html
https://www.datacamp.com/courses/writing-functions-in-r
https://github.com/jennybc/purrr-tutorial

THANK YOU

Slides @ http://bit.ly/purrr-slides

All materials (code files too): https://github.com/cwickham/purrr-tutorial

! @cvwickham

http://cwick.co.nz

cwickham@gmail.com

FOR HIRE

http://bit.ly/purrr-slides
https://github.com/cwickham/purrr-tutorial
http://cwick.co.nz
mailto:cwickham@gmail.com

